69 research outputs found
Step by step: reconstruction of terrestrial animal movement paths by dead-reckoning
Background: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to ‘fill in the gaps’ between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.Results: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.Conclusions: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed
Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis
BACKGROUND: Cigarette smoke disrupts the protective barrier established by the airway epithelium through direct damage to the epithelial cells, leading to cell death. Since the morphology of the airway epithelium of smokers does not typically demonstrate necrosis, the most likely mechanism for epithelial cell death in response to cigarette smoke is apoptosis. We hypothesized that cigarette smoke directly up-regulates expression of apoptotic genes, which could play a role in airway epithelial apoptosis. METHODS: Microarray analysis of airway epithelium obtained by bronchoscopy on matched cohorts of 13 phenotypically normal smokers and 9 non-smokers was used to identify specific genes modulated by smoking that were associated with apoptosis. Among the up-regulated apoptotic genes was pirin (3.1-fold, p < 0.002), an iron-binding nuclear protein and transcription cofactor. In vitro studies using human bronchial cells exposed to cigarette smoke extract (CSE) and an adenovirus vector encoding the pirin cDNA (AdPirin) were performed to test the direct effect of cigarette smoke on pirin expression and the effect of pirin expression on apoptosis. RESULTS: Quantitative TaqMan RT-PCR confirmed a 2-fold increase in pirin expression in the airway epithelium of smokers compared to non-smokers (p < 0.02). CSE applied to primary human bronchial epithelial cell cultures demonstrated that pirin mRNA levels increase in a time-and concentration-dependent manner (p < 0.03, all conditions compared to controls). Overexpression of pirin, using the vector AdPirin, in human bronchial epithelial cells was associated with an increase in the number of apoptotic cells assessed by both TUNEL assay (5-fold, p < 0.01) and ELISA for cytoplasmic nucleosomes (19.3-fold, p < 0.01) compared to control adenovirus vector. CONCLUSION: These observations suggest that up-regulation of pirin may represent one mechanism by which cigarette smoke induces apoptosis in the airway epithelium, an observation that has implications for the pathogenesis of cigarette smoke-induced diseases
Microstructure and biomechanical characteristics of bone substitutes for trauma and orthopaedic surgery
Abstract.
BACKGROUND: Many (artificial) bone substitute materials are currently available for use in orthopaedic trauma surgery. Objective data on their biological and biomechanical characteristics, which determine their clinical application, is mostly lacking. The aim of this study was to investigate structural and in vitro mechanical properties of nine bone substitute cements registered for use in orthopaedic trauma surgery in the Netherlands.
METHODS: Seven calcium phosphate cements (BoneSource®, Calcibon®, ChronOS®, Eurobone®, HydroSet™, Norian SRS®, and Ostim®), one calcium sulphate cement (MIIG® X3), and one bioactive glass cement (Cortoss®) were tested. Structural characteristics were measured by micro-CT scanning. Compression strength and stiffness were determined following unconfined compression tests.
RESULTS: Each bone substitute had unique characteristics. Mean total porosity ranged from 53% (Ostim®) to 0.5% (Norian SRS®). Mean pore size exceeded 100 μm only in Eurobone® and Cortoss® (162.2 ± 107.1 μm and 148.4 ± 70.6 μm, respectively). However, 230 μm pores were found in Calcibon®, Norian SRS®, HydroSet™, and MIIG® X3. Connectivity density ranged from 27/cm3 for HydroSet™ to 0.03/cm3 for Calcibon®. The ultimate compression strength was highest in Cortoss® (47.32 MPa) and lowest in Ostim® (0.24 MPa). Young's Modulus was highest in Calcibon® (790 MPa) and lowest in Ostim® (6 MPa).
CONCLUSIONS: The bone substitutes tested display a wide range in structural properties and compression strength, indicating that they will be suitable for different clinical indications. The data outlined here will help surgeons to select the most suitable products currently available for specific clinical indications
Natural variation in life history and aging phenotypes is associated with mitochondrial DNA deletion frequency in Caenorhabditis briggsae
<p>Abstract</p> <p>Background</p> <p>Mutations that impair mitochondrial functioning are associated with a variety of metabolic and age-related disorders. A barrier to rigorous tests of the role of mitochondrial dysfunction in aging processes has been the lack of model systems with relevant, naturally occurring mitochondrial genetic variation. Toward the goal of developing such a model system, we studied natural variation in life history, metabolic, and aging phenotypes as it relates to levels of a naturally-occurring heteroplasmic mitochondrial <it>ND5 </it>deletion recently discovered to segregate among wild populations of the soil nematode, <it>Caenorhabditis briggsae</it>. The normal product of <it>ND5 </it>is a central component of the mitochondrial electron transport chain and integral to cellular energy metabolism.</p> <p>Results</p> <p>We quantified significant variation among <it>C. briggsae </it>isolates for all phenotypes measured, only some of which was statistically associated with isolate-specific <it>ND5 </it>deletion frequency. We found that fecundity-related traits and pharyngeal pumping rate were strongly inversely related to <it>ND5 </it>deletion level and that <it>C. briggsae </it>isolates with high <it>ND5 </it>deletion levels experienced a tradeoff between early fecundity and lifespan. Conversely, oxidative stress resistance was only weakly associated with <it>ND5 </it>deletion level while ATP content was unrelated to deletion level. Finally, mean levels of reactive oxygen species measured <it>in vivo </it>showed a significant non-linear relationship with <it>ND5 </it>deletion level, a pattern that may be driven by among-isolate variation in antioxidant or other compensatory mechanisms.</p> <p>Conclusions</p> <p>Our findings suggest that the <it>ND5 </it>deletion may adversely affect fitness and mitochondrial functioning while promoting aging in natural populations, and help to further establish this species as a useful model for explicit tests of hypotheses in aging biology and mitochondrial genetics.</p
Inverse Association between Methylation of Human Papillomavirus Type 16 DNA and Risk of Cervical Intraepithelial Neoplasia Grades 2 or 3
The clinical relevance of human papillomavirus type 16 (HPV16) DNA methylation has not been well documented, although its role in modulation of viral transcription is recognized.Study subjects were 211 women attending Planned Parenthood clinics in Western Washington for routine Papanicolaou screening who were HPV16 positive at the screening and/or subsequent colposcopy visit. Methylation of 11 CpG dinucleotides in the 3' end of the long control region of the HPV16 genome was examined by sequencing the cloned polymerase chain reaction products. The association between risk of CIN2/3 and degree of CpG methylation was estimated using a logistic regression model.CIN2/3 was histologically confirmed in 94 (44.5%) of 211 HPV16 positive women. The likelihood of being diagnosed as CIN2/3 increased significantly with decreasing numbers of methylated CpGs (meCpGs) in the 3' end of the long control region (P(for trend) = 0.003). After adjusting for HPV16 variants, number of HPV16-positive visits, current smoking status and lifetime number of male sex partners, the odds ratio for the association of CIN2/3 with ≥4 meCpGs was 0.31 (95% confidence interval, 0.12-0.79). The proportion of ≥4 meCpGs decreased appreciably as the severity of the cervical lesion increased (P(for trend) = 0.001). The inverse association remained similar when CIN3 was used as the clinical endpoint. Although not statistically significant, the ≥4 meCpGs-related risk reduction was more substantial among current, as compared to noncurrent, smokers.Results suggest that degree of the viral genome methylation is related to the outcome of an HPV16 cervical infection
A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)
Background: Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance: Our results suggest that GPS telemetry is reliably applicable to riparian and even divin
Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds
Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome
Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS
Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls
Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities
- …
