752 research outputs found
PeroxiBase: a database with new tools for peroxidase family classification
Peroxidases (EC 1.11.1.x), which are encoded by small or large multigenic families, are involved in several important physiological and developmental processes. They use various peroxides as electron acceptors to catalyse a number of oxidative reactions and are present in almost all living organisms. We have created a peroxidase database (http://peroxibase.isb-sib.ch) that contains all identified peroxidase-encoding sequences (about 6000 sequences in 940 organisms). They are distributed between 11 superfamilies and about 60 subfamilies. All the sequences have been individually annotated and checked. PeroxiBase can be consulted using six major interlink sections ‘Classes', ‘Organisms', ‘Cellular localisations', ‘Inducers', ‘Repressors' and ‘Tissue types'. General documentation on peroxidases and PeroxiBase is accessible in the ‘Documents' section containing ‘Introduction', ‘Class description', ‘Publications' and ‘Links'. In addition to the database, we have developed a tool to classify peroxidases based on the PROSITE profile methodology. To improve their specificity and to prevent overlaps between closely related subfamilies the profiles were built using a new strategy based on the silencing of residues. This new profile construction method and its discriminatory capacity have been tested and validated using the different peroxidase families and subfamilies present in the database. The peroxidase classification tool called PeroxiScan is accessible at the following address: http://peroxibase.isb-sib.ch/peroxiscan.ph
ViralZone: recent updates to the virus knowledge resource
ViralZone (http://viralzone.expasy.org) is a knowledge repository that allows users to learn about viruses including their virion structure, replication cycle and host-virus interactions. The information is divided into viral fact sheets that describe virion shape, molecular biology and epidemiology for each viral genus, with links to the corresponding annotated proteomes of UniProtKB. Each viral genus page contains detailed illustrations, text and PubMed references. This new update provides a linked view of viral molecular biology through 133 new viral ontology pages that describe common steps of viral replication cycles shared by several viral genera. This viral cell-cycle ontology is also represented in UniProtKB in the form of annotated keywords. In this way, users can navigate from the description of a replication-cycle event, to the viral genus concerned, and the associated UniProtKB protein record
New and continuing developments at PROSITE
PROSITE (http://prosite.expasy.org/) consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule a collection of rules, which increases the discriminatory power of these profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. PROSITE signatures, together with ProRule, are used for the annotation of domains and features of UniProtKB/Swiss-Prot entries. Here, we describe recent developments that allow users to perform whole-proteome annotation as well as a number of filtering options that can be combined to perform powerful targeted searches for biological discovery. The latest version of PROSITE (release 20.85, of 30 August 2012) contains 1308 patterns, 1039 profiles and 1041 ProRule
ViralZone: a knowledge resource to understand virus diversity
The molecular diversity of viruses complicates the interpretation of viral genomic and proteomic data. To make sense of viral gene functions, investigators must be familiar with the virus host range, replication cycle and virion structure. Our aim is to provide a comprehensive resource bridging together textbook knowledge with genomic and proteomic sequences. ViralZone web resource (www.expasy.org/viralzone/) provides fact sheets on all known virus families/genera with easy access to sequence data. A selection of reference strains (RefStrain) provides annotated standards to circumvent the exponential increase of virus sequences. Moreover ViralZone offers a complete set of detailed and accurate virion picture
Method validation of nanoparticle tracking analysis to measure pulmonary nanoparticle content: the size distribution in exhaled breath condensate depends on occupational exposure
A particle exposure assessment based on the dose deposited in the lungs would be the gold standard for the evaluation of any resulting health effects. Measuring particles in exhaled breath condensate (EBC)-a matrix containing water and airway lining fluid-could help to evaluate particle retention in the lungs. This study aimed to (1) validate a nanoparticle tracking analysis (NTA) method for determining the particle number concentration and their hydrodynamic size distribution in EBC, and (2) apply this method to EBC collected from workers exposed to soapstone (n = 55) or quartz dust (n = 12) and controls (n = 11). A standard latex bead solution was used to determine the linear range, limit of detection (LOD), repeatability (coefficient of variation, CV), and bias in spiked EBC. An LM10 NanoSight instrument with NTA version 3.1 software was used for measurement. RTubes(®) were used for field collection of EBC. The repeatability obtained for a D50 size distribution in EBC showed less than 8% variability, with a bias <7%. The particle concentration was linear in the range ≤2.5 × 10(8) particles ml(-1) with a LOD of 4 × 10(6) particles ml(-1). A recovery of 117 ± 20% at 6.2 × 10(7) particles ml(-1) was obtained with a CV <10% and a bias <20%. EBC from workers exposed to quartz, who experienced the largest exposure to silica particles, consistently exhibited a statistically significant (p < 0.01) higher concentration of particles in their EBC, with a size distribution shift towards larger values than the other groups. Results showed that the NTA technique performed well for characterizing the size distribution and concentrations of particles in EBC. The technique needs to be corroborated with a larger population of workers
MoKCa database - mutations of kinases in cancer
Members of the protein kinase family are amongst the most commonly mutated genes in human cancer, and both mutated and activated protein kinases have proved to be tractable targets for the development of new anticancer therapies The MoKCa database (Mutations of Kinases in Cancer, http://strubiol.icr.ac.uk/extra/mokca) has been developed to structurally and functionally annotate, and where possible predict, the phenotypic consequences of mutations in protein kinases implicated in cancer. Somatic mutation data from tumours and tumour cell lines have been mapped onto the crystal structures of the affected protein domains. Positions of the mutated amino-acids are highlighted on a sequence-based domain pictogram, as well as a 3D-image of the protein structure, and in a molecular graphics package, integrated for interactive viewing. The data associated with each mutation is presented in the Web interface, along with expert annotation of the detailed molecular functional implications of the mutation. Proteins are linked to functional annotation resources and are annotated with structural and functional features such as domains and phosphorylation sites. MoKCa aims to provide assessments available from multiple sources and algorithms for each potential cancer-associated mutation, and present these together in a consistent and coherent fashion to facilitate authoritative annotation by cancer biologists and structural biologists, directly involved in the generation and analysis of new mutational data
First insights into structure-function relationships of alkylglycerol monooxygenase
Alkylglycerol monooxygenase is a tetrahydrobiopterin-dependent enzyme that cleaves the O-alkyl-bond of alkylglycerols. It is an exceptionally unstable, hydrophobic membrane protein which has never been purified in active form. Recently, we were able to identify the sequence of alkylglycerol monooxygenase. TMEM195, the gene coding for alkylglycerol monooxygenase, belongs to the fatty acid hydroxylases, a family of integral membrane enzymes which have an 8-histidine motif crucial for catalysis. Mutation of each of these residues resulted in a complete loss of activity. We now extended the mutational analysis to another 25 residues and identified three further residues conserved throughout all members of the fatty acid hydroxylases which are essential for alkylglycerol monooxygenase activity. Furthermore, mutation of a specific glutamate resulted in an 18-fold decreased affinity of the protein to tetrahydrobiopterin, strongly indicating a potential important role in cofactor interaction. A glutamate residue in a comparable amino acid surrounding had already been shown to be responsible for tetrahydrobiopterin binding in the aromatic amino acid hydroxylases. Ab initio modelling of the enzyme yielded a structural model for the central part of alkylglycerol monooxygenase where all essential residues identified by mutational analysis are in close spatial vicinity, thereby defining the potential catalytic site of this enzym
The 20 years of PROSITE
PROSITE consists of documentation entries describing protein domains, families and functional sites, as well as associated patterns and profiles to identify them. It is complemented by ProRule, a collection of rules based on profiles and patterns, which increases the discriminatory power of profiles and patterns by providing additional information about functionally and/or structurally critical amino acids. In this article, we describe the implementation of a new method to assign a status to pattern matches, the new PROSITE web page and a new approach to improve the specificity and sensitivity of PROSITE methods. The latest version of PROSITE (release 20.19 of 11 September 2007) contains 1319 patterns, 745 profiles and 764 ProRules. Over the past 2 years, about 200 domains have been added, and now 53% of UniProtKB/Swiss-Prot entries (release 54.2 of 11 September 2007) have a PROSITE match. PROSITE is available on the web at: http://www.expasy.org/prosit
ProRule: a new database containing functional and structural information on PROSITE profiles
Motivation: Increase the discriminatory power of PROSITE profiles to facilitate function determination and provide biologically relevant information about domains detected by profiles for the annotation of proteins. Summary: We have created a new database, ProRule, which contains additional information about PROSITE profiles. ProRule contains notably the position of structurally and/or functionally critical amino acids, as well as the condition they must fulfill to play their biological role. These supplementary data should help function determination and annotation of the UniProt Swiss-Prot knowledgebase. ProRule also contains information about the domain detected by the profile in the Swiss-Prot line format. Hence, ProRule can be used to make Swiss-Prot annotation more homogeneous and consistent. The format of ProRule can be extended to provide information about combination of domains. Availability: ProRule can be accessed through ScanProsite at http://www.expasy.org/tools/scanprosite. A file containing the rules will be made available under the PROSITE copyright conditions on our ftp site (ftp://www.expasy.org/databases/prosite/) by the next PROSITE release. Contact: [email protected]
ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins
ScanProsite—http://www.expasy.org/tools/scanprosite/—is a new and improved version of the web-based tool for detecting PROSITE signature matches in protein sequences. For a number of PROSITE profiles, the tool now makes use of ProRules—context-dependent annotation templates—to detect functional and structural intra-domain residues. The detection of those features enhances the power of function prediction based on profiles. Both user-defined sequences and sequences from the UniProt Knowledgebase can be matched against custom patterns, or against PROSITE signatures. To improve response times, matches of sequences from UniProtKB against PROSITE signatures are now retrieved from a pre-computed match database. Several output modes are available including simple text views and a rich mode providing an interactive match and feature viewer with a graphical representation of result
- …
