4,012 research outputs found

    Gravitomagnetic Resonance Shift due to a Slowly Rotating Compact Star

    Full text link
    The effect of a slowly rotating mass on a forced harmonic oscillator with two degrees of freedom is studied in the weak field approximation. It is found that according to the general theory of relativity there is a shift in the resonat frequency of the oscillator which depends on the density and rotational frequency of the gravitational source. The proposed shift is quite small under normal physical situations however it is estimated that for compact x-ray sources such as white dwarfs, pulsars, and neutron stars the shift is quite appreciable.Comment: 8 pages, 2 figures, Accepted for Publication in Inter. Journal of Modern Physics

    Arecibo timing and single-pulse observations of 17 pulsars

    Full text link
    We report on timing and single-pulse observations of 17 pulsars discovered at the Arecibo observatory. The highlights of our sample are the recycled pulsars J1829+2456, J1944+0907 and the drifting subpulses observed in PSR J0815+0939. For the double neutron star binary J1829+2456, in addition to improving upon our existing measurement of relativistic periastron advance, we have now measured the pulsar's spin period derivative. This new result sets an upper limit on the transverse speed of 120 km/s and a lower limit on the characteristic age of 12.4 Gyr. From our measurement of proper motion of the isolated 5.2-ms pulsar J1944+0907, we infer a transverse speed of 188 +/- 65 km/s. This is higher than that of any other isolated millisecond pulsar. An estimate of the speed, using interstellar scintillation, of 235 +/- 45 km/s indicates that the scattering medium along the line of sight is non-uniform. We discuss the drifting subpulses detected from three pulsars in the sample, in particular the remarkable drifting subpulse properties of the 645-ms pulsar J0815+0939. Drifting is observed in all four components of the pulse profile, with the sense of drift varying among the different components. This unusual `bi-drifting'' behaviour challenges standard explanations of the drifting subpulse phenomenon.Comment: 9 pages, 6 figures. Accepted for publication in MNRA

    Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    Get PDF
    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation

    An AUC-based Permutation Variable Importance Measure for Random Forests

    Get PDF
    The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html

    A Comparative Study of Threshold-based Feature Selection Techniques

    Get PDF
    Abstract Given high-dimensional software measurement data, researchers and practitioners often use feature (metric) selection techniques to improve the performance of software quality classification models. This paper presents our newly proposed threshold-based feature selection techniques, comparing the performance of these techniques by building classification models using five commonly used classifiers. In order to evaluate the effectiveness of different feature selection techniques, the models are evaluated using eight different performance metrics separately since a given performance metric usually captures only one aspect of the classification performance. All experiments are conducted on three Eclipse data sets with different levels of class imbalance. The experiments demonstrate that the choice of a performance metric may significantly influence the results. In this study, we have found four distinct patterns when utilizing eight performance metrics to order 11 threshold-based feature selection techniques. Moreover, performances of the software quality models either improve or remain unchanged despite the removal of over 96% of the software metrics (attributes)

    Advanced high temperature static strain sensor development

    Get PDF
    An examination was made into various techniques to be used to measure static strain in gas turbine liners at temperatures up to 1150 K (1600 F). The methods evaluated included thin film and wire resistive devices, optical fibers, surface acoustic waves, the laser speckle technique with a heterodyne readout, optical surface image and reflective approaches and capacitive devices. A preliminary experimental program to develop a thin film capacitive device was dropped because calculations showed that it would be too sensitive to thermal gradients. In a final evaluation program, the laser speckle technique appeared to work well up to 1150 K when it was used through a relatively stagnant air path. The surface guided acoustic wave approach appeared to be interesting but to require too much development effort for the funds available. Efforts to develop a FeCrAl resistive strain gage system were only partially successful and this part of the effort was finally reduced to a characterization study of the properties of the 25 micron diameter FeCrAl (Kanthal A-1) wire. It was concluded that this particular alloy was not suitable for use as the resistive element in a strain gage above about 1000 K

    Methods to Isolate Possible Bacteriophage for Micrococcus Luteus and Acinetobacter Baumannii

    Full text link
    The increasing prevalence of antibiotic-resistant strains of bacteria has led to a crisis in treatment options. Acinetobacter baumannii is an example of a bacterium that has developed a dangerous level of multidrug resistance. Not only does it have genes allowing for the resistance to antibiotics, but it also produces a biofilm that protects it. In recent years, A. baumannii has become a major contributor to nosocomial infections making it critical to develop new treatment methods. Micrococcus luteus, while typically not thought of as a pathogen, is also developing a resistance to antibiotics. M. luteus is capable of forming a biofilm on its own making it worrisome as it has increasingly been noted as an opportunistic pathogen. One potential new treatment of antibiotic resistance is the development of bacteriophage therapy, using bacterial viruses to target the infection and treat it. This study examines methods for isolating novel bacteriophage from dairy cattle feces, specifically for the biofilm producers A. baumannii and M. luteus

    PSR J1829+2456: a relativistic binary pulsar

    Get PDF
    We report the discovery of a new binary pulsar, PSR J1829+2456, found during a mid-latitude drift-scan survey with the Arecibo telescope. Our initial timing observations show the 41-ms pulsar to be in a 28-hr, slightly eccentric, binary orbit. The advance of periastron, omegadot = 0.28 +/- 0.01 deg/yr is derived from our timing observations spanning 200 days. Assuming that the advance of periastron is purely relativistic and a reasonable range of neutron star masses for PSR J1829+2456 we constrain the companion mass to be between 1.22 Msun and 1.38 Msun, making it likely to be another neutron star. We also place a firm upper limit on the pulsar mass of 1.38 Msun. The expected coalescence time due to gravitational-wave emission is long (~60 Gyr) and this system will not significantly impact upon calculations of merger rates that are relevant to upcoming instruments such as LIGO.Comment: Accepted MNRAS, 5 pages, 3 figure

    The Patient's Guide to Psoriasis Treatment. Part 4: Goeckerman Therapy.

    Get PDF
    BackgroundThe Goeckerman regimen remains one of the oldest, most reliable treatment options for patients with moderate to severe psoriasis. Goeckerman therapy currently consists of exposure to ultraviolet B light and application of crude coal tar. The details of the procedure can be confusing and challenging to understand for the first-time patient or provider.ObjectiveTo present a freely available online guide and video on Goeckerman treatment that explains the regimen in a patient-oriented manner.MethodsThe Goeckerman protocol used at the University of California-San Francisco Psoriasis and Skin Treatment Center as well as available information from the literature were reviewed to design a comprehensive guide for patients receiving Goeckerman treatment.ResultsWe created a printable guide and video resource that covers the supplies needed for Goeckerman regimen, the treatment procedure, expected results, how to monitor for adverse events, and discharge planning.ConclusionThis new resource is beneficial for prospective patients planning to undergo Goeckerman treatment, healthcare providers, and trainees who want to learn more about this procedure. Online media and video delivers material in a way that is flexible and often familiar to patients
    corecore