190 research outputs found
Analytic Criteria for Power Exhaust in Divertors due to Impurity Radiation
Present divertor concepts for next step experiments such ITER and TPX rely
upon impurity and hydrogen radiation to transfer the energy from the edge
plasma to the main chamber and divertor chamber walls. The efficiency of these
processes depends strongly on the heat flux, the impurity species, and the
connection length. Using a database for impurity radiation rates constructed
from the ADPAK code package, we have developed criteria for the required
impurity fraction, impurity species, connection length and electron temperature
and density at the mid-plane. Consistent with previous work, we find that the
impurity radiation from coronal equilibrium rates is, in general, not adequate
to exhaust the highest expected heating powers in present and future
experiments. As suggested by others, we examine the effects of enhancing the
radiation rates with charge exchange recombination and impurity recycling, and
develop criteria for the minimum neutral fraction and impurity recycling rate
that is required to exhaust a specified power. We also use this criteria to
find the optimum impurity for divertor power exhaust.Comment: Preprint for the 11th PSI meeting, Adobe pdf with 14 figures, 15
page
Radiation Rates for Low Z Impurities in Edge Plasmas
The role of impurity radiation in the reduction of heat loads on divertor
plates in present experiments such as DIII-D, JET, JT-60, ASDEX, and Alcator
C-Mod, and in planned experiments such as ITER and TPX places a new degree of
importance on the accuracy of impurity radiation emission rates for electron
temperatures below 250 eV for ITER and below 150 eV for present experiments. We
have calculated the radiated power loss using a collisional radiative model for
Be, B, C, Ne and Ar using a multiple configuration interaction model which
includes density dependent effects, as well as a very detailed treatment of the
energy levels and meta-stable levels. The "collisional radiative" effects are
very important for Be at temperatures below 10 eV. The same effects are present
for higher Z impurities, but not as strongly. For some of the lower Z elements,
the new rates are about a factor of two lower than those from a widely used,
simpler average-ion package (ADPAK) developed for high Z ions and for higher
temperatures. Following the approach of Lengyel for the case where electron
heat conduction is the dominant mechanism for heat transport along field lines,
our analysis indicates that significant enhancements of the radiation losses
above collisional radiative model rates due to such effects as rapid recycling
and charge exchange recombination will be necessary for impurity radiation to
reduce the peak heat loads on divertor plates for high heat flux experiments
such as ITER.Comment: Preprint for the 11th PSI meeting, gzipped postscript with 11
figures, 14 page
Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor
Reduction of the peak heat loads on the plasma facing components is essential
for the success of the next generation of high fusion power tokamaks such as
the International Thermonuclear Experimental Reactor (ITER) 1 . Many present
concepts for accomplishing this involve the use of atomic processes to transfer
the heat from the plasma to the main chamber and divertor chamber walls and
much of the experimental and theoretical physics research in the fusion program
is directed toward this issue. The results of these experiments and
calculations are the result of a complex interplay of many processes. In order
to identify the key features of these experiments and calculations and the
relative role of the primary atomic processes, simple quasi-analytic models and
the latest atomic physics rate coefficients and cross sections have been used
to assess the relative roles of central radiation losses through
bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange
and hydrogen radiation losses from the scrape-off layer and divertor plasma and
impurity radiation losses from the divertor plasma. This anaysis indicates that
bremsstrahlung from the plasma center and impurity radiation from the plasma
edge and divertor plasma can each play a significant role in reducing the power
to the divertor plates, and identifies many of the factors which determine the
relative role of each process. For instance, for radiation losses in the
divertor to be large enough to radiate the power in the divertor for high power
experiments, a neutral fraction of 10-3 to 10-2 and an impurity recycling rate
of netrecycle of ~ 10^16 s m^-3 will be required in the divertor.Comment: Preprint for the 1994 APSDPP meeting, uuencoded and gzipped
postscript with 22 figures, 40 pages
A Review of Recent Developments in Atomic Processes for Divertors and Edge Plasmas
The most promising concepts for power and particle control in tokamaks and
other fusion experiments rely upon atomic processes to transfer the power and
momentum from the edge plasma to the plasma chamber walls. This places a new
emphasis on processes at low temperatures (1-200 eV) and high densities
(10^20-10^22 m^-3). The most important atomic processes are impurity and
hydrogen radiation, ionization, excitation, recombination, charge exchange,
radiation transport, molecular collisions, and elastic scattering of atoms,
molecules and ions. Important new developments have occurred in each of these
areas. The best available data for these processes and an assessment of their
role in plasma wall interactions are summarized, and the major areas where
improved data are needed are reviewed.Comment: Preprint for the 11th PSI meeting, postscript with 22 figures, 40
page
Trade patterns facilitating highly pathogenic avian influenza virus dissemination in the free-grazing layer duck system in Vietnam
Highly pathogenic avian influenza (HPAI) viruses continue to threaten smallholder poultry producers in several South‐east Asian countries, including Vietnam. In particular, the free‐grazing duck system has been repeatedly highlighted as a major risk factor for HPAI outbreaks. Free‐grazing ducks, which scavenge on rice paddies after the harvest, account for a large proportion of the duck population in Vietnam and the wider South‐east Asian region. However, the structure and dynamics of the free‐grazing duck production from farm to consumption has not been described for Vietnam. In this study, we used a value chain approach to provide a complete picture of the actors involved in the production and marketing of free‐grazing duck eggs and spent layer ducks, as well as to investigate the governance structure of this food system. Group interviews and key informant interviews were conducted in two provinces located in the Mekong River Delta (MRD) and the Red River Delta (RRD). The results presented here highlight similarities and differences in farming and trade practices between the two provinces. The trade of spent layer ducks involved large volumes of live ducks being sent to China and Cambodia for consumption, generating a substantial risk of transboundary spread of pathogens, including HPAI viruses. We describe the major role of “duck yards”, which act as hubs in the northbound trade of spent layer ducks. These yards should be considered as essential links in the value chain of spent layer ducks when considering HPAI surveillance and control. The veterinary authorities are only marginally involved in the value chain activities, and their influence could be strengthened by increasing surveillance activities for instance in duck yards. Last, we discuss the dynamics of the duck value chain and further implications for future HPAI management policies
Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh
This paper anthropologically explores how key actors in the Chittagong live bird trading network perceive biosecurity and risk in relation to avian influenza between production sites, market maker scenes and outlets. They pay attention to the past and the present, rather than the future, downplaying the need for strict risk management, as outbreaks have not been reported frequently for a number of years. This is analysed as ‘temporalities of risk perception regarding biosecurity’, through Black Swan theory, the idea that unexpected events with major effects are often inappropriately rationalized (Taleb in The Black Swan. The impact of the highly improbable, Random House, New York, 2007). This incorporates a sociocultural perspective on risk, emphasizing the contexts in which risk is understood, lived, embodied and experienced. Their risk calculation is explained in terms of social consent, practical intelligibility and convergence of constraints and motivation. The pragmatic and practical orientation towards risk stands in contrast to how risk is calculated in the avian influenza preparedness paradigm. It is argued that disease risk on the ground has become a normalized part of everyday business, as implied in Black Swan theory. Risk which is calculated retrospectively is unlikely to encourage investment in biosecurity and, thereby, points to the danger of unpredictable outlier events
A large-scale study of a poultry trading network in Bangladesh: implications for control and surveillance of avian influenza viruses
Since its first report in 2007, avian influenza (AI) has been endemic in Bangladesh. While live poultry marketing is widespread throughout the country and known to influence AI dissemination and persistence, trading patterns have not been described. The aim of this study is to assess poultry trading practices and features of the poultry trading networks which could promote AI spread, and their potential implications for disease control and surveillance. Data on poultry trading practices was collected from 849 poultry traders during a cross-sectional survey in 138 live bird markets (LBMs) across 17 different districts of Bangladesh. The quantity and origins of traded poultry were assessed for each poultry type in surveyed LBMs. The network of contacts between farms and LBMs resulting from commercial movements of live poultry was constructed to assess its connectivity and to identify the key premises influencing it
Using Risk Assessment as Part of a Systems Approach to the Control and Prevention of HPAIV H5N1
Since its emergence in China in 1996, highly pathogenic avian influenza virus subtype H5N1 has spread across Asia, Africa, and Europe. Countries had to promptly implement control and prevention measures. Numerous research and capacity building initiatives were conducted in the affected regions to improve the capacity of national animal health services to support the development of risk-based mitigation strategies. This paper reviews and discusses risk assessments initiated in several South-East Asian and African countries under one of these projects. Despite important data gaps, the risk assessment results improved the ability of policy makers to design appropriate risk management policies. Disease risk was strongly influenced by various human behavioral factors. The ongoing circulation of HPAIV H5N1 in several Asian countries and in Egypt, despite major disease control efforts, supports the need for an interdisciplinary approach to development of tailored risk management policies, in accordance with the EcoHealth paradigm and the broad concept of risk governance. In particular, active stakeholders engagement and integration of economic and social studies into the policy making process are needed to optimize compliance and sustainable behavioral changes, thereby increasing the effectiveness of mitigation strategies
Domestic Ducks and H5N1 Influenza Epidemic, Thailand
Traditional methods of raising ducks in Southeast Asia must be modified
Effects of infection-induced migration delays on the epidemiology of avian influenza in wild mallard populations
Wild waterfowl populations form a natural reservoir of Avian Influenza (AI) virus, and fears exist that these birds may contribute to an AI pandemic by spreading the virus along their migratory flyways. Observational studies suggest that individuals infected with AI virus may delay departure from migratory staging sites. Here, we explore the epidemiological dynamics of avian influenza virus in a migrating mallard (Anas platyrhynchos) population with a specific view to understanding the role of infection-induced migration delays on the spread of virus strains of differing transmissibility. We develop a host-pathogen model that combines the transmission dynamics of influenza with the migration, reproduction and mortality of the host bird species. Our modeling predicts that delayed migration of individuals influences both the timing and size of outbreaks of AI virus. We find that (1) delayed migration leads to a lower total number of cases of infection each year than in the absence of migration delay, (2) when the transmission rate of a strain is high, the outbreak starts at the staging sites at which birds arrive in the early part of the fall migration, (3) when the transmission rate is low, infection predominantly occurs later in the season, which is further delayed when there is a migration delay. As such, the rise of more virulent AI strains in waterfowl could lead to a higher prevalence of infection later in the year, which could change the exposure risk for farmed poultry. A sensitivity analysis shows the importance of generation time and loss of immunity for the effect of migration delays. Thus, we demonstrate, in contrast to many current transmission risk models solely using empirical information on bird movements to assess the potential for transmission, that a consideration of infection-induced delays is critical to understanding the dynamics of AI infection along the entire flyway.<br /
- …
