312 research outputs found
Pion-Muon Asymmetry Revisited
Long ago an unexpected and unexplainable phenomena was observed. The
distribution of muons from positive pion decay at rest was anisotropic with an
excess in the backward direction relative to the direction of the proton beam
from which the pions were created. Although this effect was observed by several
different groups with pions produced by different means, the result was not
accepted by the physics community, because it is in direct conflict with a
large set of other experiments indicating that the pion is a pseudoscalar
particle. It is possible to satisfy both sets of experiments if helicity-zero
vector particles exist and the pion is such a particle. Helicity-zero vector
particles have direction but no net spin. For the neutral pion to be a vector
particle requires an additional modification to conventional theory as
discussed herein. An experiment is proposed which can prove that the asymmetry
in the distribution of muons from pion decay is a genuine physical effect
because the asymmetry can be modified in a controllable manner. A positive
result will also prove that the pion is NOT a pseudoscalar particle.Comment: 9 pages, 3 figure
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
Underlying physical principles for the high efficiency of excitation energy
transfer in light-harvesting complexes are not fully understood. Notably, the
degree of robustness of these systems for transporting energy is not known
considering their realistic interactions with vibrational and radiative
environments within the surrounding solvent and scaffold proteins. In this
work, we employ an efficient technique to estimate energy transfer efficiency
of such complex excitonic systems. We observe that the dynamics of the
Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport
due to a convergence of energy scales among all important internal and external
parameters. In particular, we show that the FMO energy transfer efficiency is
optimum and stable with respect to the relevant parameters of environmental
interactions and Frenkel-exciton Hamiltonian including reorganization energy
, bath frequency cutoff , temperature , bath spatial
correlations, initial excitations, dissipation rate, trapping rate, disorders,
and dipole moments orientations. We identify the ratio of \lambda T/\gamma\*g
as a single key parameter governing quantum transport efficiency, where g is
the average excitonic energy gap.Comment: minor revisions, removing some figures, 19 pages, 19 figure
Discovery of Isotopes of the Transuranium Elements with 93 <= Z <= 98
One hundred and five isotopes of the transuranium elements neptunium,
plutonium, americium, curium, berkelium and californium have so far been
observed; the discovery of these isotopes is discussed. For each isotope a
brief summary of the first refereed publication, including the production and
identification method, is presented.Comment: To be published in Atomic Data and Nuclear Data Table
Semi-Alicyclic Polyimides: Insights into Optical Properties and Morphology Patterning Approaches for Advanced Technologies
Rheological properties of some complex polymers containing alicyclic structures
Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.Two polyimides obtained from an alicyclic and flexible dianhydride, namely 5-(2,5-dioxotetrahydrofurfuryl)-3-methyl- 3-cyclohexene-1,2-dicarboxylic acid anhydride (DOCDA) and an aromatic diamines 4,4’-oxydianiline (ODA) or 4-(4-((4-(4- aminophenoxy) phenyl)sulfonyl)phenoxy (p-BAPS) were synthesized and analysed by rheological methods. The results were correlated with the chemical structure of polyimides and with other properties, such as flexibility, transparency, hydrophobicity and atomic force microscopy. It has been showed that the factors that contribute to the interactions in the polyimide systems can be controlled for improving the thermal, optical, and rheological properties, for subsequent microelectronic applications, in which relatively low permittivity and high thermal stability are required.dc201
Recommended from our members
Au@PtPd enhanced immunoassay with 3D printed smartphone device for quantification of diaminochlorotriazine (DACT), the major atrazine biomarker
Increased use of pesticides in agriculture requires new advanced techniques to monitor both environmental levels and human exposure of pesticides to avoid potential adverse health outcomes in sensitive populations. Atrazine is widely used to control broadleaf weeds, and here we developed a new sensor capable of detecting diaminochlorotriazine (DACT), the major metabolite and biomarker of atrazine exposure. We established an Au@PtPd nanoparticles labeled lateral flow immunoassay (LFIA) for immunochromatographic based rapid detection of urinary DACT. The detection was based on competitive immunoassay between the analyte and the BSA-conjugated antigen. As evaluated, the coupled mesoporous core-shell Au@PtPd nanoparticles, with superior peroxidase-like activity, as the signal indicator offers a rapid direct chromatographic readout inversely correlated with the concentration of analytes, providing a detection limit of 0.7 ng/mL for DACT. Moreover, the detection limits were boosted to as low as 11 pg/mL with the detectable range from 10 pg/ml to 10 ng/mL, through a one-step catalytic chromogenic reaction. A rapid readout device was developed by 3D printing to provide a stable real-time quantification of the color intensity capable of assessing both chromatographic and absorbance results. This Au@PtPd nanoparticle-based immunosensing platform, as well as the 3D printed readout device, provide a promising tool for on-site and ultrasensitive detection of pesticide biomarkers
Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. paratuberculosis peptide vaccine
Studies in cattle show CD8 cytotoxic T cells (CTL), with the ability to kill intracellular bacteria, develop following stimulation of monocyte-depleted peripheral blood mononuclear cells (mdPBMC) with antigen-presenting cells (APC, i.e. conventional dendritic cells [cDC] and monocyte-derived DC [MoDC]) pulsed with MMP, a membrane protein from Mycobacterium avium subsp. paratuberculosis (Map) encoded byMAP2121c. CTL activity was diminished if CD4 T cells were depleted from mdPBMC before antigen (Ag) presentation by APC, suggesting simultaneous cognate recognition of MMP epitopes presented by MHC I and MHC II molecules to CD4 and CD8 T cells is essential for development of CTL activity. To explore this possibility, studies were conducted with mdPBMC cultures in the presence of monoclonal antibodies (mAbs) specific for MHC class I and MHC class II molecules. The CTL response of mdPBMC to MMP-pulsed APC was completely blocked in the presence of mAbs to both MHC I and II molecules and also blocked in the presence of mAbs to either MHC I or MHC II alone. The results demonstrate simultaneous cognate recognition of Ag by CD4 and CD8 T cells is essential for delivery of CD4 T cell help to CD8 T cells to elicit development of CTL
- …
