2,820 research outputs found

    Energy Dependence of the Delta Resonance: Chiral Dynamics in Action

    Full text link
    There is an important connection between the low energy theorems of QCD and the energy dependence of the Delta resonance in pi-N scattering, as well as the closely related gamma^{*} N -> pi N reaction. The resonance shape is due not only to the strong pi-N interaction in the p wave but the small interaction in the s wave; the latter is due to spontaneous chiral symmetry breaking in QCD (i.e. the Nambu-Goldstone nature of the pion). A brief overview of experimental tests of chiral perturbation theory and chiral based models is presentedComment: 11 pages, 6 figures, Festschrift for S.N. yan

    Influence of long-range dipolar interactions on the phase stability and hysteresis shapes of ferroelectric and antiferroelectric multilayers

    Get PDF
    Phase transition and field driven hysteresis evolution of a two-dimensional Ising grid consisting of ferroelectric-antiferroelectric multilayers that take into account the long range dipolar interactions were simulated by a Monte-Carlo method. Simulations were carried out for a 1+1 bilayer and a 5+5 superlattice. Phase stabilities of components comprising the structures with an electrostatic-like coupling term were also studied. An electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric layers towards 180º domains with very flat domain interfaces mainly due to the competition between this term and the dipole-dipole interaction. The antiferroelectric layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic domains at the expense of the domain wall energy. The long-range interactions become significant near the interfaces. For high periodicity structures with several interfaces, the interlayer long-range interactions substantially impact the configuration of the ferroelectric layers while the antiferroelectric layers remain quite stable unless these layers are near the Neel temperature. In systems investigated with several interfaces, the hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be expected in the presence of anti-parallel dipoles, i. e., the switching takes place abruptly. Some recent experimental observations in ferroelectric-antiferroelectric multilayers are discussed where we conclude that the different electrical properties of bilayers and superlattices are not only due to strain effects alone but also long-range interactions. The latter manifests itself particularly in superlattices where layers are periodically exposed to each other at the interfaces

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Correlation between three assay systems for anti-Mullerian hormone (AMH) determination

    Get PDF
    PURPOSE: Analysis of anti-Müllerian hormone (AMH) is becoming of recognized importance in reproductive medicine, but assays are not standardized. We have evaluated the correlation between the new Gen II ELISA kit (Beckman-Coutler) and the older ELISA kits by Immunotech (IOT) and Diagnostic Systems Laboratories (DSL). METHODS: A total of 56 archived serum samples from patients with subfertility or reproductive endocrine disorders were retrieved and assayed in duplicate using the three AMH ELISA kits . The samples covered a wide range of AMH concentrations (1.9 to 142.5 pmol/L). RESULTS: We observed good correlations between the new (AMH Gen II) and old AMH assay kits by IOT and DSL (R(2) = 0.971 and 0.930 respectively). The regression equations were AMH (Gen II) = 1.353 × AMH (IOT) + 0.051 and AMH (Gen II) = 1.223 × AMH (DSL) – 1.270 respectively. CONCLUSIONS: AMH concentrations using the Gen II kit are slightly higher than those from the IOT and DSL kits. Standardization of assay results worldwide is urgently required but this analysis facilitates the interpretation of values obtained historically and in future studies using any of the 3 assays available. Meanwhile, adapting clinical cut-offs from previously published work by direct conversion is not recommended

    Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals

    Get PDF
    Quantum simulation with cold atoms in optical lattices is an attractive avenue for explorations of quantum many-body physics. A principal challenge in the field is to increase the energy and length scales in current set-ups, thereby reducing temperature and coherence-time requirements. Here, we present a new paradigm for high-density, two-dimensional optical lattices in photonic crystal waveguides. Specially engineered two-dimensional photonic crystals provide a practical platform to trap atoms and engineer their interactions in ways that surpass the limitations of current technologies and enable investigations of novel quantum many-body matter. Our schemes remove the constraint on the lattice constant set by the free-space optical wavelength in favour of deeply sub-wavelength atomic arrays. We further describe possibilities for atom–atom interactions mediated by photons in two-dimensional photonic crystal waveguides with energy scales several orders of magnitude larger than for exchange interactions in free-space lattices and with the capability to engineer strongly long-range interactions

    TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export

    Get PDF
    The metazoan TREX complex is recruited to mRNA during nuclear RNA processing and functions in exporting mRNA to the cytoplasm. Nxf1 is an mRNA export receptor, which binds processed mRNA and transports it through the nuclear pore complex. At present, the relationship between TREX and Nxf1 is not understood. Here we show that Nxf1 uses an intramolecular interaction to inhibit its own RNA-binding activity. When the TREX subunits Aly and Thoc5 make contact with Nxf1, Nxf1 is driven into an open conformation, exposing its RNA-binding domain, allowing RNA binding. Moreover, the combined knockdown of Aly and Thoc5 markedly reduces the amount of Nxf1 bound to mRNA in vivo and also causes a severe mRNA export block. Together, our data indicate that TREX provides a license for mRNA export by driving Nxf1 into a conformation capable of binding mRNA

    Attitudes towards Human Papillomavirus vaccination among African parents in a city in the north of England: A qualitative study.

    Get PDF
    Background: Human papillomavirus (HPV) is sexually transmitted and has been conclusively linked to cervical cancer and genital warts. Cervical cancer is attributed to approximately 1100 deaths annually in UK, and is the second most common female cancer globally. It has been suggested that black African women are more predisposed to HPV infection and cervical cancer. A vaccine has been developed to reduce HPV infection, and in the UK, has been offered to 12-13 year old adolescent girls through schools as part of their childhood immunization programme since 2008. Upon programme initiation, it was noted that vaccine uptake was lower in schools where girls from ethnic minority groups were proportionately higher. Objectives: The study’s objectives were to explore factors influencing UK based African parents’ acceptance or decline of the HPV vaccine, whether fathers and mothers share similar views pertaining to vaccination and any interfamily tensions resulting from differing views. Methodology: A qualitative study was conducted with five African couples residing in north England. Face to face semi-structured interviews were carried out. Participants were parents to at least one daughter aged between 8 and 14 years. Recruitment was done through purposive sampling using snowballing. Results: HPV and cervical cancer awareness was generally low, with awareness lower in fathers. HPV vaccination was generally unacceptable among the participants, with fear of promiscuity, infertility and concerns that it’s still a new vaccine with yet unknown side effects cited as reasons for vaccine decline. There was HPV risk denial 3 as religion and good cultural upbringing seemed to result in low risk perceptions, with HPV and cervical cancer generally perceived as a white person’s disease. Religious values and cultural norms influenced vaccine decision-making, with fathers acting as the ultimate decision makers. Current information about why the vaccine is necessary was generally misunderstood. Conclusion: Tailored information addressing religious and cultural concerns may improve vaccine acceptability in African parents
    corecore