21,315 research outputs found
How Efficient is Rotational Mixing in Massive Stars ?
The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise
measurements of rotational velocities and nitrogen surface abundances of
massive stars in the Magellanic Clouds. Specifically, for the first time, such
abundances have been estimated for stars with significant rotational
velocities. This extraordinary data set gives us the unique possibility to
calibrate rotationally and magnetically induced mixing processes. Therefore, we
have computed a grid of stellar evolution models varying in mass, initial
rotational velocity and chemical composition. In our models we find that
although magnetic fields generated by the Spruit-Taylor dynamo are essential to
understand the internal angular momentum transport (and hence the rotational
behavior), the corresponding chemical mixing must be neglected to reproduce the
observations. Further we show that for low metallicities detailed initial
abundances are of prime importance, as solar-scaled abundances may result in
significant calibration errors.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New
Mexico, July 16-20, 2007, 3 pages, 3 figure
How Efficient is Rotational Mixing in Massive Stars ?
The VLT-Flames Survey for Massive Stars (Evans05,Evans06) provides recise
measurements of rotational velocities and nitrogen surface abundances of
massive stars in the Magellanic Clouds. Specifically, for the first time, such
abundances have been estimated for stars with significant rotational
velocities. This extraordinary data set gives us the unique possibility to
calibrate rotationally and magnetically induced mixing processes. Therefore, we
have computed a grid of stellar evolution models varying in mass, initial
rotational velocity and chemical composition. In our models we find that
although magnetic fields generated by the Spruit-Taylor dynamo are essential to
understand the internal angular momentum transport (and hence the rotational
behavior), the corresponding chemical mixing must be neglected to reproduce the
observations. Further we show that for low metallicities detailed initial
abundances are of prime importance, as solar-scaled abundances may result in
significant calibration errors.Comment: To appear in the proceedings of "First Stars III", Santa Fe, New
Mexico, July 16-20, 2007, 3 pages, 3 figure
A filter synthesis technique applied to the design of multistage broad-band microwave amplifiers
A method for designing multistage broad-band
amplifiers based upon well-known filter synthesis techniques is presented. Common all-pole low-pass approximations are used to synthesize prototype amplifier circuits that may be scaled in frequency and impedance. All-pass filters introduced at the first stage are shown to improve input match while maintaining circuit
performance less 6 dB gain. A theoretical comparison is made with the distributed amplifier and the cascaded single-stage distributed amplifier. Theoretically, a larger gain-bandwidth product is achieved using the synthesis technique. A proof-of-concept Butterworth
low-pass two-stage amplifier was designed, simulated,
and measured and achieved a flat gain performance of 1–4 GHz with a power gain of 14.5±1 dB close to the predicted 1–4.2 GHz, 15±1 dB
Rotational Mixing in Magellanic Clouds B Stars - Theory versus Observation
We have used VLT FLAMES data to constrain the uncertain physics of rotational
mixing in stellar evolution models. We have simulated a population of single
stars and find two groups of observed stars that cannot be explained: (1) a
group of fast rotating stars which do not show evidence for rotational mixing
and (2) a group of slow rotators with strong N enrichment. Binary effects and
fossil magnetic fields may be considered to explain those two groups. We
suggest that the element boron could be used to distinguish between rotational
mixing and the binary scenario. Our single star population simulations quantify
the expected amount of boron in fast and slow rotators and allow a comparison
with measured nitrogen and boron abundances in B-stars.Comment: to appear in Comm. in Astroseismology - Contribution to the
Proceedings of the 38th LIAC, 200
Talking about My Generation
This article is a response to Fredric Jameson's criticisms of the author's 'The History of Theory' (Critical Inquiry 32/4, 2006). For Jameson's article, 'How Not to Historicise Theory', see Critical Inquiry, 34, Spring 2008. The author situates Jameson's arguments in the context of the historicisation of theory, treating them as an example of the (Marxist) theoretical program to think the historical determinations of thought. It is argued that this program is an instrument for the formation of the privileged intellectual persona of the theorist
Recommended from our members
Facing up to the challenge of behavioural observation in infant hearing assessment
The ability to assess detection and discrimination of speech by infants has proved elusive. Dr Iain Jackson and colleagues discuss how new technologies and fresh approaches might offer valuable insight into young infants’ behavioural responses to sound
A comparison of star formation characteristics in different types of irregular galaxies
Two regions of recent star formation in blue irregular galaxies were observed with the IUE in the short wavelength, low dispersion mode. The spectra indicates that the massive star content is similar in these regions and is best fit by massive stars formed in a burst and now are approximately 2.5 to 3.0 million years old
EPR spectroscopy of iron- and nickel-doped [ZnAl]-layered double hydroxides: modeling active sites in heterogeneous water oxidation catalysts
Iron-doped nickel layered double hydroxides (LDHs) are among the most active heterogeneous water oxidation catalysts. Due to inter-spin interactions, however, the high density of magnetic centers results in line-broadening in magnetic resonance spectra. As a result, gaining atomic-level insight into the catalytic mechanism via electron paramagnetic resonance (EPR) is not generally possible. To circumvent spin-spin broadening, iron and nickel atoms were doped into non-magnetic [ZnAl]-LDH materials and the coordination environments of the isolated Fe(III) and Ni(II) sites were characterized. Multifrequency EPR spectroscopy identified two distinct Fe(III) sites (S = 5/2) in [Fe:ZnAl]-LDH. Changes in zero field splitting (ZFS) were induced by dehydration of the material, revealing that one of the Fe(III) sites is solvent-exposed (i.e. at an edge, corner, or defect site). These solvent-exposed sites feature an axial ZFS of 0.21 cm⁻¹ when hydrated. The ZFS increases dramatically upon dehydration (to -1.5 cm⁻¹), owing to lower symmetry and a decrease in the coordination number of iron. The ZFS of the other (“inert”) Fe(III) site maintains an axial ZFS of 0.19-0.20 cm⁻¹ under both hydrated and dehydrated conditions. We observed a similar effect in [Ni:ZnAl]-LDH materials; notably, Ni(II) (S = 1) atoms displayed a single, small ZFS (±0.30 cm⁻¹) in hydrated material, whereas two distinct Ni(II) ZFS values (±0.30 and ±1.1 cm⁻¹) were observed in the dehydrated samples. Although the magnetically-dilute materials were not active catalysts, the identification of model sites in which the coordination environments of iron and nickel were particularly labile (e.g. by simple vacuum drying) is an important step towards identifying sites in which the coordination number may drop spontaneously in water, a probable mechanism of water oxidation in functional materials
A radial mode ultrasonic horn for the inactivation of <i>Escherichia coli</i> K12
Tuned cylindrical radial mode ultrasonic horns offer advantages over ultrasonic probes in the design of flow-through devices for bacterial inactivation. This study presents a comparison of the effectiveness of a radial horn and probe in the inactivation of Escherichia coli K12. The radial horn is designed using finite element analysis and the predicted modal parameters are validated using experimental modal analysis. A validated finite element model of the probe is also presented. Visual studies of the cavitation fields produced by the radial horn and probe are carried out using luminol and also backlighting to demonstrate the advantages of radial horns in producing a more focused cavitation field with widely dispersed streamers. Microbiological studies show that, for the same power density, better inactivation of E. coli K12 is achieved using the radial horn and, also, the radial horn offers greater achievable power density resulting in further improvements in bacterial inactivation. The radial horn is shown to be more effective than the probe device and offers opportunities to design in-line flow-through devices for processing applications
- …
