2,183 research outputs found
Geologic and mineral and water resources investigations in western Colorado, using Skylab EREP data
The author has identified the following significant results. Skylab photographs are superior to ERTS images for photogeologic interpretation, primarily because of improved resolution. Lithologic contacts can be detected consistently better on Skylab S190A photos than on ERTS images. Color photos are best; red and green band photos are somewhat better than color-infrared photos; infrared band photos are worst. All major geologic structures can be recognized on Skylab imagery. Large folds, even those with very gentle flexures, can be mapped accurately and with confidence. Bedding attitudes of only a few degrees are recognized; vertical exaggeration factor is about 2.5X. Mineral deposits in central Colorado may be indicated on Skylab photos by lineaments and color anomalies, but positive identification of these features is not possible. S190A stereo color photography is adequate for defining drainage divides that in turn define the boundaries and distribution of ground water recharge and discharge areas within a basin
Ambipolar Nernst effect in NbSe
The first study of Nernst effect in NbSe reveals a large quasi-particle
contribution with a magnitude comparable and a sign opposite to the vortex
signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall
and Nernst coefficients, we argue that this large Nernst signal originates from
the thermally-induced counterflow of electrons and holes and indicates a
drastic change in the electron scattering rate in the CDW state. The results
provide new input for the debate on the origin of the anomalous Nernst signal
in high-T cuprates.Comment: 5 pages including 4 figure
Smoothing effect and delocalization of interacting Bose-Einstein condensates in random potentials
We theoretically investigate the physics of interacting Bose-Einstein
condensates at equilibrium in a weak (possibly random) potential. We develop a
perturbation approach to derive the condensate wavefunction for an amplitude of
the potential smaller than the chemical potential of the condensate and for an
arbitrary spatial variation scale of the potential. Applying this theory to
disordered potentials, we find in particular that, if the healing length is
smaller than the correlation length of the disorder, the condensate assumes a
delocalized Thomas-Fermi profile. In the opposite situation where the
correlation length is smaller than the healing length, we show that the random
potential can be significantly smoothed and, in the meanfield regime, the
condensate wavefunction can remain delocalized, even for very small correlation
lengths of the disorder.Comment: The word "screening" has been changed to "smoothing" to avoid
confusions with other effects discussed in the literature. This does not
affect the content of paper, nor the results, nor the physical discussio
Submesoscale dispersion in the vicinity of the Deepwater Horizon spill
Reliable forecasts for the dispersion of oceanic contamination are important
for coastal ecosystems, society and the economy as evidenced by the Deepwater
Horizon oil spill in the Gulf of Mexico in 2010 and the Fukushima nuclear plant
incident in the Pacific Ocean in 2011. Accurate prediction of pollutant
pathways and concentrations at the ocean surface requires understanding ocean
dynamics over a broad range of spatial scales. Fundamental questions concerning
the structure of the velocity field at the submesoscales (100 meters to tens of
kilometers, hours to days) remain unresolved due to a lack of synoptic
measurements at these scales. \textcolor{black} {Using high-frequency position
data provided by the near-simultaneous release of hundreds of accurately
tracked surface drifters, we study the structure of submesoscale surface
velocity fluctuations in the Northern Gulf Mexico. Observed two-point
statistics confirm the accuracy of classic turbulence scaling laws at
200m50km scales and clearly indicate that dispersion at the submesoscales is
\textit{local}, driven predominantly by energetic submesoscale fluctuations.}
The results demonstrate the feasibility and utility of deploying large clusters
of drifting instruments to provide synoptic observations of spatial variability
of the ocean surface velocity field. Our findings allow quantification of the
submesoscale-driven dispersion missing in current operational circulation
models and satellite altimeter-derived velocity fields.Comment: 9 pages, 6 figure
Possible retardation effects of quark confinement on the meson spectrum
The reduced Bethe-Salpeter equation with scalar confinement and vector gluon
exchange is applied to quark-antiquark bound states. The so called intrinsic
flaw of Salpeter equation with static scalar confinement is investigated. The
notorious problem of narrow level spacings is found to be remedied by taking
into consideration the retardation effect of scalar confinement. Good fit for
the mass spectrum of both heavy and light quarkomium states is then obtained.Comment: 14 pages in LaTex for
Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential
We present a detailed numerical study of the effect of a disordered potential
on a confined one-dimensional Bose-Einstein condensate, in the framework of a
mean-field description. For repulsive interactions, we consider the
Thomas-Fermi and Gaussian limits and for attractive interactions the behavior
of soliton solutions. We find that the disorder average spatial extension of
the stationary density profile decreases with an increasing strength of the
disordered potential both for repulsive and attractive interactions among
bosons. In the Thomas Fermi limit, the suppression of transport is accompanied
by a strong localization of the bosons around the state k=0 in momentum space.
The time dependent density profiles differ considerably in the cases we have
considered. For attractive Bose-Einstein condensates, a bright soliton exists
with an overall unchanged shape, but a disorder dependent width. For weak
disorder, the soliton moves on and for a stronger disorder, it bounces back and
forth between high potential barriers.Comment: 13 pages, 13 figures, few typos correcte
Bosons in Disordered Optical Potentials
In this work we systematically investigate the condensate properties,
superfluid properties and quantum phase transitions in interacting Bose gases
trapped in disordered optical potentials. We numerically solve the Bose-Hubbard
Hamiltonian exactly for different: (a) types of disorder, (b) disorder
strengths, and (c) interatomic interactions. The three types of disorder
studied are: quasiperiodic disorder, uniform random disorder and random
speckle-type disorder. We find that the Bose glass, as identified by Fisher et
al [Phys. Rev. B {\bf 40}, 546 (1989)], contains a normal condensate component
and we show how the three different factors listed above affect it.Comment: 4 pages, 4 figures (low res) v2 Title,Abstract,Introduction: changes;
Figure 3: Add label to axi
Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder
The effect of a weak three-dimensional (3d) isotropic laser speckle disorder
on various thermodynamic properties of a dilute Bose gas is considered at zero
temperature. First, we summarize the derivation of the autocorrelation function
of laser speckles in 1d and 2d following the seminal work of Goodman. The goal
of this discussion is to show that a Gaussian approximation of this function,
proposed in some recent papers, is inconsistent with the general background of
laser speckle theory. Then we propose a possible experimental realization for
an isotropic 3d laser speckle potential and derive its corresponding
autocorrelation function. Using a Fourier transform of that function, we
calculate both condensate depletion and sound velocity of a Bose-Einstein
condensate as disorder ensemble averages of such a weak laser speckle potential
within a perturbative solution of the Gross-Pitaevskii equation. By doing so,
we reproduce the expression of the normalfluid density obtained earlier within
the treatment of Landau. This physically transparent derivation shows that
condensate particles, which are scattered by disorder, form a gas of
quasiparticles which is responsible for the normalfluid component
A Bayesian palaeoenvironmental transfer function model for acidified lakes
A Bayesian approach to palaeoecological environmental reconstruction deriving from the unimodal responses generally exhibited by organisms to an environmental gradient is described. The approach uses Bayesian model selection to calculate a collection of probability-weighted, species-specific response curves (SRCs) for each taxon within a training set, with an explicit treatment for zero abundances. These SRCs are used to reconstruct the environmental variable from sub-fossilised assemblages. The approach enables a substantial increase in computational efficiency (several orders of magnitude) over existing Bayesian methodologies. The model is developed from the Surface Water Acidification Programme (SWAP) training set and is demonstrated to exhibit comparable predictive power to existing Weighted Averaging and Maximum Likelihood methodologies, though with improvements in bias; the additional explanatory power of the Bayesian approach lies in an explicit calculation of uncertainty for each individual reconstruction. The model is applied to reconstruct the Holocene acidification history of the Round Loch of Glenhead, including a reconstruction of recent recovery derived from sediment trap data.The Bayesian reconstructions display similar trends to conventional (Weighted Averaging Partial Least Squares) reconstructions but provide a better reconstruction of extreme pH and are more sensitive to small changes in diatom assemblages. The validity of the posteriors as an apparently meaningful representation of assemblage-specific uncertainty and the high computational efficiency of the approach open up the possibility of highly constrained multiproxy reconstructions
Large Possible retardation effects of quark confinement on the meson spectrum II
We present the results of a study of heavy-light-quark bound states in the
context of the reduced Bethe-Salpeter equation with relativistic vector and
scalar interactions. We find that satisfactory fits may also be obtained when
the retarded effect of the quark-antiquark interaction is concerned.Comment: 11 pages, RevTex, to appear in PR
- …
