97 research outputs found

    Exclusion of soil macrofauna did not affect soil quality but increased crop yields in a sub-humid tropical maize-based system

    No full text
    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g. Conservation Agriculture), are not well understood. This study aimed to quantify soil macrofauna and its impact on soil aggregation, soil carbon and crop yields in a maize-soybean system under tropical sub-humid conditions. A field trial was established in Western Kenya in 2003 with tillage and residue retention as independent factors. A macrofauna exclusion experiment was superimposed in 2005 through regular insecticide applications, and measurements were taken from 2005 to 2012. Termites were the most abundant macrofauna group comprising 61% of total macrofauna numbers followed by ants (20%), while few earthworms were present (5%). Insecticide application significantly reduced termites (by 86 and 62%) and earthworms (by 100 and 88%) at 0-15 and 15-30 cm soil depth respectively. Termite diversity was low, with all species belonging to the family of Macrotermitinae which feed on wood, leaf litter and dead/dry grass. Seven years of macrofauna exclusion did not affect soil aggregation or carbon contents, which might be explained by the low residue retention and the nesting and feeding behavior of the dominant termites present. Macrofauna exclusion resulted in 34% higher maize grain yield and 22% higher soybean grain yield, indicating that pest damage – probably including termites - overruled any potentially beneficial impact of soil macrofauna. Results contrast with previous studies on the effects of termites on plant growth, which were mostly conducted in (semi-) arid regions. Future research should contribute to sustainable management strategies that reduce detrimental impact due to dominance of potential pest species while conserving soil macrofauna diversity and their beneficial functions in agroecosystems

    Computational approaches to understanding reaction outcomes of organic processes in ionic liquids

    Get PDF
    This review considers how various computational methods have been applied to explain the changes in reaction outcome on moving from a molecular to an ionic liquid solvent. Initially, different conceptual approaches to modelling ionic liquids are discussed, followed by a consideration of the limitations and constraints of these approaches. A series of case studies demonstrating the utility of computational approaches to explain processes in ionic liquids are considered; some of these address the solubility of species in ionic liquids while others examine classes of reaction where the outcome in ionic liquids can be explained through the application of computational approaches. Overall, the utility of computational methods to explain, and potentially predict, the effect of ionic liquids on reaction outcome is demonstrated

    Comparison of Permanganate-Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization

    Get PDF
    Permanganate-oxidizable C (POXC) and mineralizable C (as determined by short-term aerobic incubation of rewetted soil) are measures of active organic matter that may provide early indication of soil C stabilization and mineralization processes. To date, the relationship between these two promising active organic matter tests has not been comprehensively evaluated, and little is known about their functional role in the soil ecosystem. Here, we examined the relationship between POXC and mineralizable C across a wide range of soil types, management histories, and geographic locations across the United States (13 studies, 76 total sites; n = 1071) and the ability of POXC and mineralizable C to predict crop yield and total aboveground biomass. Results from this comparative analysis showed that POXC and mineralizable C are related (r2 = 0.15–0.80) but that the relationship was differentially influenced by management practices. Overall, POXC better reflected practices that promote organic matter accumulation or stabilization and therefore can be a useful indicator of long-term soil C sequestration. Conversely, mineralizable C better reflected practices that promote organic matter mineralization and therefore can be a useful indicator of short-term soil nutrient availability. Our results also show that both mineralizable C and POXC were better predictors of corn (Zea mays L.) grain yield, aboveground biomass, and tomato (Solanum lycopersicum L.) fruit yield than other soil C fractions evaluated here. Thus, the integrated use of POXC and mineralizable C can provide a complementary framework to assess the relative dynamics of soil C stabilization and nutrient mineralization functions in agroecosystems

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.Peer reviewe
    corecore