152 research outputs found

    On the microlocal properties of the range of systems of principal type

    Full text link
    The purpose of this paper is to study microlocal conditions for inclusion relations between the ranges of square systems of pseudodifferential operators which fail to be locally solvable. The work is an extension of earlier results for the scalar case in this direction, where analogues of results by L. H\"ormander about inclusion relations between the ranges of first order differential operators with coefficients in CC^\infty which fail to be locally solvable were obtained. We shall study the properties of the range of systems of principal type with constant characteristics for which condition (\Psi) is known to be equivalent to microlocal solvability.Comment: Added Theorem 4.7, Corollary 4.8 and Lemma A.4, corrected misprints. The paper has 40 page

    Cohomological non-rigidity of generalized real Bott manifolds of height 2

    Full text link
    We investigate when two generalized real Bott manifolds of height 2 have isomorphic cohomology rings with Z/2 coefficients and also when they are diffeomorphic. It turns out that cohomology rings with Z/2 coefficients do not distinguish those manifolds up to diffeomorphism in general. This gives a counterexample to the cohomological rigidity problem for real toric manifolds posed in \cite{ka-ma08}. We also prove that generalized real Bott manifolds of height 2 are diffeomorphic if they are homotopy equivalent

    A characterization of Dirac morphisms

    Full text link
    Relating the Dirac operators on the total space and on the base manifold of a horizontally conformal submersion, we characterize Dirac morphisms, i.e. maps which pull back (local) harmonic spinor fields onto (local) harmonic spinor fields.Comment: 18 pages; restricted to the even-dimensional cas

    On the integral cohomology of smooth toric varieties

    Full text link
    Let XΣX_\Sigma be a smooth, not necessarily compact toric variety. We show that a certain complex, defined in terms of the fan Σ\Sigma, computes the integral cohomology of XΣX_\Sigma, including the module structure over the homology of the torus. In some cases we can also give the product. As a corollary we obtain that the cycle map from Chow groups to integral Borel-Moore homology is split injective for smooth toric varieties. Another result is that the differential algebra of singular cochains on the Borel construction of XΣX_\Sigma is formal.Comment: 10 page

    On the ubiquity of trivial torsion on elliptic curves

    Get PDF
    The purpose of this paper is to give a "down--to--earth" proof of the well--known fact that a randomly chosen elliptic curve over the rationals is most likely to have trivial torsion

    Differential geometry, Palatini gravity and reduction

    Get PDF
    The present article deals with a formulation of the so called (vacuum) Palatini gravity as a general variational principle. In order to accomplish this goal, some geometrical tools related to the geometry of the bundle of connections of the frame bundle LMLM are used. A generalization of Lagrange-Poincar\'e reduction scheme to these types of variational problems allows us to relate it with the Einstein-Hilbert variational problem. Relations with some other variational problems for gravity found in the literature are discussed.Comment: 28 pages, no figures. (v3) Remarks, discussion and references adde

    Quantum Principal Bundles and Corresponding Gauge Theories

    Full text link
    A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.Comment: 28 pages, AMS-LaTe

    GALEX J201337.6+092801: The lowest gravity subdwarf B pulsator

    Full text link
    We present the recent discovery of a new subdwarf B variable (sdBV), with an exceptionally low surface gravity. Our spectroscopy of J20136+0928 places it at Teff = 32100 +/- 500, log(g) = 5.15 +/- 0.10, and log(He/H) = -2.8 +/- 0.1. With a magnitude of B = 12.0, it is the second brightest V361 Hya star ever found. Photometry from three different observatories reveals a temporal spectrum with eleven clearly detected periods in the range 376 to 566 s, and at least five more close to our detection limit. These periods are unusually long for the V361 Hya class of short-period sdBV pulsators, but not unreasonable for p- and g-modes close to the radial fundamental, given its low surface gravity. Of the ~50 short period sdB pulsators known to date, only a single one has been found to have comparable spectroscopic parameters to J20136+0928. This is the enigmatic high-amplitude pulsator V338 Ser, and we conclude that J20136+0928 is the second example of this rare subclass of sdB pulsators located well above the canonical extreme horizontal branch in the HR diagram.Comment: 5 pages, accepted for publication in ApJ Letter

    (Contravariant) Koszul duality for DG algebras

    Full text link
    A DG algebras AA over a field kk with H(A)H(A) connected and H<0(A)=0H_{<0}(A)=0 has a unique up to isomorphism DG module KK with H(K)kH(K)\cong k. It is proved that if H(A)H(A) is degreewise finite, then RHom_A(?,K): D^{df}_{+}(A)^{op} \equiv D_{df}^{+}}(RHom_A(K,K)) is an exact equivalence of derived categories of DG modules with degreewise finite-dimensional homology. It induces an equivalences of Dbdf(A)opD^{df}_{b}(A)^{op} and the category of perfect DG RHomA(K,K)RHom_A(K,K)-modules, and vice-versa. Corresponding statements are proved also when H(A)H(A) is simply connected and H<0(A)=0H^{<0}(A)=0.Comment: 33 page

    Elliptic operators in odd subspaces

    Full text link
    An elliptic theory is constructed for operators acting in subspaces defined via odd pseudodifferential projections. Subspaces of this type arise as Calderon subspaces for first order elliptic differential operators on manifolds with boundary, or as spectral subspaces for self-adjoint elliptic differential operators of odd order. Index formulas are obtained for operators in odd subspaces on closed manifolds and for general boundary value problems. We prove that the eta-invariant of operators of odd order on even-dimesional manifolds is a dyadic rational number.Comment: 27 page
    corecore