1,664 research outputs found
Spectral methods in fluid dynamics
Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome
A three-dimensional spectral algorithm for simulations of transition and turbulence
A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented
Multiple paths to subharmonic laminar breakdown in a boundary layer
Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbances need not take the conventional lambda vortex/high-shear layer path
Spectral multigrid methods for the solution of homogeneous turbulence problems
New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence
Psuedospectral calculation of shock turbulence interactions
A Chebyshev-Fourier discretization with shock fitting is used to solve the unsteady Euler equations. The method is applied to shock interactions with plane waves and with a simple model of homogeneous isotropic turbulence. The plane wave solutions are compared to linear theory
On similarity solutions of a boundary layer problem with an upstream moving wall
The problem of a boundary layer on a flat plate which has a constant velocity opposite in direction to that of the uniform mainstream is examined. It was previously shown that the solution of this boundary value problem is crucially dependent on the parameter which is the ratio of the velocity of the plate to the velocity of the free stream. In particular, it was proved that a solution exists only if this parameter does not exceed a certain critical value, and numerical evidence was adduced to show that this solution is nonunique. Using Crocco formulation the present work proves this nonuniqueness. Also considered are the analyticity of solutions and the derivation of upper bounds on the critical value of wall velocity parameter
Numerical experiments on the stability of controlled boundary layers
Nonlinear simulations are presented for instability and transition in parallel water boundary layers subjected to pressure gradient, suction, or heating control. In the nonlinear regime, finite amplitude, 2-D Tollmein-Schlichting waves grow faster than is predicted by linear theory. Moreover, this discrepancy is greatest in the case of heating control. Likewise, heating control is found to be the least effective in delaying secondary instabilities of both the fundamental and subharmonic type. Flow field details (including temperature profiles) are presented for both the uncontrolled boundary layer and the heated boundary layer
Spectral multigrid methods with applications to transonic potential flow
Spectral multigrid methods are demonstrated to be a competitive technique for solving the transonic potential flow equation. The spectral discretization, the relaxation scheme, and the multigrid techniques are described in detail. Significant departures from current approaches are first illustrated on several linear problems. The principal applications and examples, however, are for compressible potential flow. These examples include the relatively challenging case of supercritical flow over a lifting airfoil
Spectral methods for partial differential equations
Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized
- …
