823 research outputs found

    Comparison of Calculations for the Hubbard model obtained with Quantum-Monte-Carlo, exact and stochastic Diagonalization

    Full text link
    In this paper we compare numerical results for the ground state of the Hubbard model obtained by Quantum-Monte-Carlo simulations with results from exact and stochastic diagonalizations. We find good agreement for the ground state energy and superconducting correlations for both, the repulsive and attractive Hubbard model. Special emphasis lies on the superconducting correlations in the repulsive Hubbard model, where the small magnitude of the values obtained by Monte-Carlo simulations gives rise to the question, whether these results might be caused by fluctuations or systematic errors of the method. Although we notice that the Quantum-Monte-Carlo method has convergence problems for large interactions, coinciding with a minus sign problem, we confirm the results of the diagonalization techniques for small and moderate interaction strengths. Additionally we investigate the numerical stability and the convergence of the Quantum-Monte-Carlo method in the attractive case, to study the influence of the minus sign problem on convergence. Also here in the absence of a minus sign problem we encounter convergence problems for strong interactions.Comment: 24 pages, 9 figure

    Critical Current in the High-T_c Glass model

    Full text link
    The high-T_c glass model can be combined with the repulsive tt'--Hubbard model as microscopic description of the striped domains found in the high-T_c materials. In this picture the finite Hubbard clusters are the origin of the d-wave pairing. In this paper we show, that the glass model can also explain the critical currents usually observed in the high-T_c materials. We use two different approaches to calculate the critical current densities of the high-T_c glass model. Both lead to a strongly anisotropic critical current. Finally we give an explanation, why we expect nonetheless a nearly perfect isotropic critical current in the high-T_c superconductors.Comment: 8 pages with 5 eps-figures, LaTeX using RevTeX, accepted by Int.J.Mod.Phys.

    Parallelization of the exact diagonalization of the t-t'-Hubbard model

    Full text link
    We present a new parallel algorithm for the exact diagonalization of the ttt-t'-Hubbard model with the Lanczos-method. By invoking a new scheme of labeling the states we were able to obtain a speedup of up to four on 16 nodes of an IBM SP2 for the calculation of the ground state energy and an almost linear speedup for the calculation of the correlation functions. Using this algorithm we performed an extensive study of the influence of the next-nearest hopping parameter tt' in the ttt-t'-Hubbard model on ground state energy and the superconducting correlation functions for both attractive and repulsive interaction.Comment: 18 Pages, 1 table, 8 figures, Latex uses revtex, submitted to Comp. Phys. Com

    Glass Model, Hubbard Model and High-Temperature Superconductivity

    Full text link
    In this paper we revisit the glass model describing the macroscopic behavior of the High-Temperature superconductors. We link the glass model at the microscopic level to the striped phase phenomenon, recently discussed widely. The size of the striped phase domains is consistent with earlier predictions of the glass model when it was introduced for High-Temperature Superconductivity in 1987. In an additional step we use the Hubbard model to describe the microscopic mechanism for d-wave pairing within these finite size stripes. We discuss the implications for superconducting correlations of Hubbard model, which are much higher for stripes than for squares, for finite size scaling, and for the new view of the glass model picture.Comment: 7 pages, 7 figures (included), LaTex using Revtex, accepted by Int. J. Mod. Phys.

    Introduction to stochastic error correction methods

    Full text link
    We propose a method for eliminating the truncation error associated with any subspace diagonalization calculation. The new method, called stochastic error correction, uses Monte Carlo sampling to compute the contribution of the remaining basis vectors not included in the initial diagonalization. The method is part of a new approach to computational quantum physics which combines both diagonalization and Monte Carlo techniques.Comment: 11 pages, 1 figur

    The diagonalization of quantum field Hamiltonians

    Full text link
    We introduce a new diagonalization method called quasi-sparse eigenvector diagonalization which finds the most important basis vectors of the low energy eigenstates of a quantum Hamiltonian. It can operate using any basis, either orthogonal or non-orthogonal, and any sparse Hamiltonian, either Hermitian, non-Hermitian, finite-dimensional, or infinite-dimensional. The method is part of a new computational approach which combines both diagonalization and Monte Carlo techniques.Comment: 12 pages, 8 figures, new material adde

    Does the 2D Hubbard Model Really Show d-Wave Superconductivity?

    Full text link
    Some issues concerning the question if the two-dimensional Hubbard model really show d-wave superconductivity are briefly discussed.Comment: Revtex, no figure

    Investigating Interactions of Biomembranes and Alcohols: A Multiscale Approach

    Full text link
    We study the interaction of lipid bilayers with short chain alcohols using molecular dynamics on different length scales. We use detailed atomistic modeling and modeling on the length scale where an alcohol is just an amphiphilic dimer. Our strategy is to calibrate a coarse--grained model against the detailed model at selected state points at low alcohol concentration and then perform a wider range of simulations using the coarse--grained model. We get semiquantitative agreement with experiment for the major observables such as order parameter and area per molecule. We find a linear increase of area per molecule with alcohol concentration. The alcohol molecules in both system descriptions are in close contact with the glycerol backbone. Butanol molecules can enter the bilayer to some extent in contrast to the behavior of shorter alcohols. At very high alcohol concentrations we find clearly increased interdigitation between leaflets.Comment: 14 pages, 6 figure

    Enhanced expression of the stemness-related factors OCT4, SOX15 and TWIST1 in ectopic endometrium of endometriosis patients

    Get PDF
    Abstract Background Current evidence suggests that endometrial-derived stem cells, spilled in the peritoneal cavity via retrograde menstruation, are key players in the establishment of endometriotic lesions. The aim of this study was to determine the presence and distribution of the stemness-related factors OCT4, SOX15, TWIST1 and DCAMLK1 in women with and without endometriosis. Methods Immunohistochemical analysis was used to determine stromal and epithelial expression of OCT4, SOX15, TWIST1 and DCAMLK1 in endometriosis patient (EP) endometrium (n = 69) and endometriotic tissue (n = 90) and in control endometrium (n = 50). Quantitative Real-Time PCR of OCT4, SOX15 TWIST1 and DCAMLK1 was performed in paired samples of EP endometrium and endometriotic tissue. Co-immunofluorescence staining was performed for OCT4 and SOX15. For statistical analyses we used unpaired t-test, Fisher combination test and Spearman test. For paired analyses, paired t-test and McNemar test were used. Results We detected a significant correlation between the expression of the established stem cell marker OCT4 and the stemness-related markers SOX15 (p < 0.001) and TWIST1 (p = 0.002) but not DCAMLK1. We showed a colocalization of SOX15 and OCT4 in epithelial and stromal cells of endometriotic tissue by coimmunofluorescence. A concordant expression of OCT4 and SOX15 in the same sample was observed in epithelial cells of the endometriotic tissue (71.7%). The expression of stemness-related factors was not associated with proliferative or secretory phase of the menstrual cycle in endometriosis patients but was found to be differentially expressed during the menstrual cycle in the control group. Increased expression of epithelial OCT4, SOX15 and TWIST1 was detected in endometriotic tissue compared to EP endometrium in paired (p = 0.021, p < 0.001 and p < 0.001) and unpaired analysis (p = 0.040, p < 0.001 and p = 0.001). Conclusion Our findings support the hypothesis that upregulation of stem cell-related factors contribute to the establishment of endometriotic lesions. Trial registration The study was approved by the institutional review board (545/2010 on 6th of May 2014) of the Medical University of Vienna ( http://ethikkommission.meduniwien.ac.at/fileadmin/ethik/media/dokumente/register/alle_2010.pdf )
    corecore