72 research outputs found
Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles
The time dependence of deviations from the Gaussian state in a freely cooling
homogeneous system of smooth inelastically colliding spheres is investigated by
kinetic theory. We determine the full time dependence of the coefficients of an
expansion around the Gaussian state in Generalized Laguerre polynomials.
Approximating this system of equations to sixth order, we find that the
asymptotic state, where the mean energy T follows Haff's law with time
independent cooling rate, is reached within a few collisions per particle.
Two-dimensional molecular dynamics simulations confirm our results and show
exponential behavior in the high-energy tails.Comment: 11 pages, 13 eps figures, to be published in Granular Matte
Granular cooling of hard needles
We have developed a kinetic theory of hard needles undergoing binary
collisions with loss of energy due to normal and tangential restitution. In
addition, we have simulated many particle systems of granular hard needles. The
theory, based on the assumption of a homogeneous cooling state, predicts that
granular cooling of the needles proceeds in two stages: An exponential decay of
the initial configuration to a state where translational and rotational
energies take on a time independent ratio (not necessarily unity), followed by
an algebraic decay of the total kinetic energy . The simulations
support the theory very well for low and moderate densities. For higher
densities, we have observed the onset of the formation of clusters and shear
bands.Comment: 7 pages, 8 figures; major changes, extended versio
Thermalization of an anisotropic granular particle
We investigate the dynamics of a needle in a two-dimensional bath composed of
thermalized point particles. Collisions between the needle and points are
inelastic and characterized by a normal restitution coefficient . By
using the Enskog-Boltzmann equation, we obtain analytical expressions for the
translational and rotational granular temperatures of the needle and show that
these are, in general, different from the bath temperature. The translational
temperature always exceeds the rotational one, though the difference decreases
with increasing moment of inertia. The predictions of the theory are in very
good agreement with numerical simulations of the model.Comment: 7 pages, 6 Figures, submitted to PRE. Revised version (Fig1, Fig5 and
Fig6 corrected + minor typos
Dynamics of Freely Cooling Granular Gases
We study dynamics of freely cooling granular gases in two-dimensions using
large-scale molecular dynamics simulations. We find that for dilute systems the
typical kinetic energy decays algebraically with time, E(t) ~ t^{-1}, in the
long time limit. Asymptotically, velocity statistics are characterized by a
universal Gaussian distribution, in contrast with the exponential high-energy
tails characterizing the early homogeneous regime. We show that in the late
clustering regime particles move coherently as typical local velocity
fluctuations, Delta v, are small compared with the typical velocity, Delta v/v
~ t^{-1/4}. Furthermore, locally averaged shear modes dominate over acoustic
modes. The small thermal velocity fluctuations suggest that the system can be
heuristically described by Burgers-like equations.Comment: 4 pages, 5 figure
Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy
We study the exchange of kinetic energy between translational and rotational
degrees of freedom for inelastic collisions of rough spheres. Even if
equipartition holds in the initial state it is immediately destroyed by
collisions. The simplest generalisation of the homogeneous cooling state allows
for two temperatures, characterizing translational and rotational degrees of
freedom separately. For times larger than a crossover frequency, which is
determined by the Enskog frequency and the initial temperature, both energies
decay algebraically like with a fixed ratio of amplitudes, different
from one.Comment: 5 pages, RevTeX, 2 eps figures, slightly expanded discussion, new
figures with dimensionless units, added references, accepted for publication
in PRE as a Rapid Com
Homogeneous cooling of rough, dissipative particles: Theory and simulations
We investigate freely cooling systems of rough spheres in two and three
dimensions. Simulations using an event driven algorithm are compared with
results of an approximate kinetic theory, based on the assumption of a
generalized homogeneous cooling state. For short times , translational and
rotational energy are found to change linearly with . For large times both
energies decay like with a ratio independent of time, but not
corresponding to equipartition. Good agreement is found between theory and
simulations, as long as no clustering instability is observed. System
parameters, i.e. density, particle size, and particle mass can be absorbed in a
rescaled time, so that the decay of translational and rotational energy is
solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure
Energy non-equipartition in systems of inelastic, rough spheres
We calculate and verify with simulations the ratio between the average
translational and rotational energies of systems with rough, inelastic
particles, either forced or freely cooling. The ratio shows non-equipartition
of energy. In stationary flows, this ratio depends mainly on the particle
roughness, but in nonstationary flows, such as freely cooling granular media,
it also depends strongly on the normal dissipation. The approach presented here
unifies and simplifies different results obtained by more elaborate kinetic
theories. We observe that the boundary induced energy flux plays an important
role.Comment: 4 pages latex, 4 embedded eps figures, accepted by Phys Rev
Effects of Velocity Correlation on Early Stage of Free Cooling Process of Inelastic Hard Sphere System
The free cooling process in the inelastic hard sphere system is studied by
analysing the data from large scale molecular dynamics simulations on a three
dimensional system. The initial energy decay, the velocity distribution
function, and the velocity correlation functions are calculated to be compared
with theoretical predictions. The energy decay rate in the homogeneous cooling
state is slightly but distinctively smaller than that expected from the
independent collision assumption. The form of the one particle velocity
distribution is found not to be stationary. These contradict to the predictions
of the kinetic theory based on the Enskog-Boltzmann equation and suggest that
the velocity correlation is already important in the early stage of homogeneous
cooling state. The energy decay rate is analysed in terms of the velocity
correlation.Comment: 9 pages (figures included). To be published in J. Phys. Soc. Jpn.
Vol. 73 No. 1 (2004) Added two references and removed one. Changed the name
of T_{L}. Added unit constants in Sec. 5 and
Elasticity near the vulcanization transition
Signatures of the vulcanization transition--amorphous solidification induced
by the random crosslinking of macromolecules--include the random localization
of a fraction of the particles and the emergence of a nonzero static shear
modulus. A semi-microscopic statistical-mechanical theory is presented of the
latter signature that accounts for both thermal fluctuations and quenched
disorder. It is found (i) that the shear modulus grows continuously from zero
at the transition, and does so with the classical exponent, i.e., with the
third power of the excess cross-link density and, quite surprisingly, (ii) that
near the transition the external stresses do not spoil the spherical symmetry
of the localization clouds of the particles.Comment: REVTEX, 5 pages. Minor change
Two-dimensional Granular Gas of Inelastic Spheres with Multiplicative Driving
We study a two-dimensional granular gas of inelastic spheres subject to
multiplicative driving proportional to a power of the
local particle velocity . The steady state properties of the model
are examined for different values of , and compared with the
homogeneous case . A driving linearly proportional to
seems to reproduce some experimental observations which could not be reproduced
by a homogeneous driving. Furthermore, we obtain that the system can be
homogenized even for strong dissipation, if a driving inversely proportional toComment: 4 pages, 5 figures (accepted as Phys. Rev. Lett.
- …
