5,522 research outputs found
Visualization of leukocyte transendothelial and interstitial migration using reflected light oblique transillumination in intravital video microscopy
Dynamic visualization of the intravascular events leading to the extravasation of leukocytes into tissues by intravital microscopy has significantly expanded our understanding of the underlying molecular processes. In contrast, the detailed observation of leukocyte transendothelial and interstitial migration in vivo has been hampered by the poor image contrast of cells within turbid media that is obtainable by conventional brightfield microscopy. Here we present a microscopic method, termed reflected light oblique transillumination microscopy, that makes use of the optical interference phenomena generated by oblique transillumination to visualize subtle gradients of refractive indices within tissues for enhanced image contrast. Using the mouse cremaster muscle, we demonstrate that this technique makes possible the reliable quantification of extravasated leukocytes as well as the characterization of morphological phenomena of leukocyte transendothelial and interstitial migration
Optimistic Agents are Asymptotically Optimal
We use optimism to introduce generic asymptotically optimal reinforcement
learning agents. They achieve, with an arbitrary finite or compact class of
environments, asymptotically optimal behavior. Furthermore, in the finite
deterministic case we provide finite error bounds.Comment: 13 LaTeX page
Extreme State Aggregation Beyond MDPs
We consider a Reinforcement Learning setup where an agent interacts with an
environment in observation-reward-action cycles without any (esp.\ MDP)
assumptions on the environment. State aggregation and more generally feature
reinforcement learning is concerned with mapping histories/raw-states to
reduced/aggregated states. The idea behind both is that the resulting reduced
process (approximately) forms a small stationary finite-state MDP, which can
then be efficiently solved or learnt. We considerably generalize existing
aggregation results by showing that even if the reduced process is not an MDP,
the (q-)value functions and (optimal) policies of an associated MDP with same
state-space size solve the original problem, as long as the solution can
approximately be represented as a function of the reduced states. This implies
an upper bound on the required state space size that holds uniformly for all RL
problems. It may also explain why RL algorithms designed for MDPs sometimes
perform well beyond MDPs.Comment: 28 LaTeX pages. 8 Theorem
Mass Density Fluctuations in Quantum and Classical descriptions of Liquid Water
First principles molecular dynamics simulation protocol is established using
revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with
Grimme's third generation of dispersion (D3) correction to describe properties
of water at ambient conditions. This study also demonstrates the consistency of
the structure of water across both isobaric (NpT) and isothermal (NVT)
ensembles. Going beyond the standard structural benchmarks for liquid water, we
compute properties that are connected to both local structure and mass density
uctuations that are related to concepts of solvation and hydrophobicity. We
directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus
Grimme dispersion corrections (D2) and both the empirical fixed charged model
(SPC/E) and many body interaction potential model (MB-pol) to further our
understanding of how the computed properties herein depend on the form of the
interaction potential
On the Computability of Solomonoff Induction and Knowledge-Seeking
Solomonoff induction is held as a gold standard for learning, but it is known
to be incomputable. We quantify its incomputability by placing various flavors
of Solomonoff's prior M in the arithmetical hierarchy. We also derive
computability bounds for knowledge-seeking agents, and give a limit-computable
weakly asymptotically optimal reinforcement learning agent.Comment: ALT 201
Bayesian reinforcement learning with exploration
We consider a general reinforcement learning problem and
show that carefully combining the Bayesian optimal policy and an exploring
policy leads to minimax sample-complexity bounds in a very general
class of (history-based) environments. We also prove lower bounds
and show that the new algorithm displays adaptive behaviour when the
environment is easier than worst-case
Probabilities on Sentences in an Expressive Logic
Automated reasoning about uncertain knowledge has many applications. One
difficulty when developing such systems is the lack of a completely
satisfactory integration of logic and probability. We address this problem
directly. Expressive languages like higher-order logic are ideally suited for
representing and reasoning about structured knowledge. Uncertain knowledge can
be modeled by using graded probabilities rather than binary truth-values. The
main technical problem studied in this paper is the following: Given a set of
sentences, each having some probability of being true, what probability should
be ascribed to other (query) sentences? A natural wish-list, among others, is
that the probability distribution (i) is consistent with the knowledge base,
(ii) allows for a consistent inference procedure and in particular (iii)
reduces to deductive logic in the limit of probabilities being 0 and 1, (iv)
allows (Bayesian) inductive reasoning and (v) learning in the limit and in
particular (vi) allows confirmation of universally quantified
hypotheses/sentences. We translate this wish-list into technical requirements
for a prior probability and show that probabilities satisfying all our criteria
exist. We also give explicit constructions and several general
characterizations of probabilities that satisfy some or all of the criteria and
various (counter) examples. We also derive necessary and sufficient conditions
for extending beliefs about finitely many sentences to suitable probabilities
over all sentences, and in particular least dogmatic or least biased ones. We
conclude with a brief outlook on how the developed theory might be used and
approximated in autonomous reasoning agents. Our theory is a step towards a
globally consistent and empirically satisfactory unification of probability and
logic.Comment: 52 LaTeX pages, 64 definiton/theorems/etc, presented at conference
Progic 2011 in New Yor
- …
