670 research outputs found
Performance evaluation of MAP algorithms with different penalties, object geometries and noise levels
A new algorithm (LBFGS-B-PC) which combines ideas of two existing convergent reconstruction algorithms, relaxed separable paraboloidal surrogate (SPS) and limited-memory Broyden-Fletcher-Goldfarb-Shanno with boundary constraints (LBFGS-B), is proposed. Its performance is evaluated in terms of log-posterior value and regional recovery ratio. The results demonstrate the superior convergence speed of the proposed algorithm to relaxed SPS and LBFGS-B, regardless of the noise level, activity distribution, object geometry, and penalties
Uniform acquisition modelling across PET imaging systems: unified scatter modelling
RIN factor of all samples used for Illumina sequencing. (PDF 225Â kb
Fast Quasi-Newton Algorithms for Penalized Reconstruction in Emission Tomography and Further Improvements via Preconditioning
OAPA This paper reports on the feasibility of using a quasi-Newton optimization algorithm, limited-memory Broyden- Fletcher-Goldfarb-Shanno with boundary constraints (L-BFGSB), for penalized image reconstruction problems in emission tomography (ET). For further acceleration, an additional preconditioning technique based on a diagonal approximation of the Hessian was introduced. The convergence rate of L-BFGSB and the proposed preconditioned algorithm (L-BFGS-B-PC) was evaluated with simulated data with various factors, such as the noise level, penalty type, penalty strength and background level. Data of three 18F-FDG patient acquisitions were also reconstructed. Results showed that the proposed L-BFGS-B-PC outperforms L-BFGS-B in convergence rate for all simulated conditions and the patient data. Based on these results, L-BFGSB- PC shows promise for clinical application
Effect of scatter correction when comparing attenuation maps: Application to brain PET/MR
Email
Print
Request Permissions
In PET imaging, attenuation and scatter corrections are an essential requirement to accurately quantify the radionuclide uptake. In the context of PET/MR scanners, obtaining the attenuation information can be challenging. Various authors have quantified the effect of an imprecise attenuation map on the reconstructed PET image but its influence on scatter correction has usually been ignored. In this paper, we investigate the effects of imperfect attenuation maps (μmaps) on the scatter correction in a simulation setting. We focused our study on three μmaps: the reference μmap derived from a CT image, and two MR-based methods. Two scatter estimation strategies were implemented: a μmap-specific scatter estimation and an ideal scatter estimation relying only on the reference CT μmap. The scatter estimation used the Single Scatter Simulation algorithm with tail-fitting. The results show that, for FDG brain PET, regardless of the μmap used in the reconstruction, the difference on PET images between μmap-specific and ideal scatter estimations is small (less than 1%). More importantly, the relative error between attenuation correction methods does not change depending on the scatter estimation method included in the simulation and reconstruction process. This means that the effect of errors in the μmap on the PET image is dominated by the attenuation correction, while the scatter estimate is relatively unaffected. Therefore, while scatter correction improves reconstruction accuracy, it is unnecessary to include scatter in the simulation when comparing different attenuation correction methods for brain PET/MR
Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model
Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
Uniform acquisition modelling across PET imaging systems: Unified scatter modelling
© 2016 IEEE. PET imaging is an important tool commonly used for studying disease by research consortia which implement multi-centre studies to improve the statistical power of findings. The UK government launched the Dementias Platform UK to facilitate one of the world's largest dementia population study involving national centres equipped with state-of-the-art PET/MR scanners from two major vendors. However, the difference in PET detector technology between the two scanners involved makes the standardisation of data acquisition and image reconstruction necessary. We propose a new approach to PET acquisition system modelling across different PET systems and technologies, focusing in particular on unified scatter estimation across TOF (time-of-flight) and non-TOF PET systems. The proposed scatter modelling is fully 3D and voxel based, as opposed to the popular line-of-response driven methods. This means that for each emitting voxel an independent 3D scatter estimate is found, inherently preserving the necessary information for TOF calculations as well as accounting for the large axial field of view. With adequate sampling of the input images, the non-TOF scatter estimate is identical to the summed TOF estimates across TOF bins, without an additional computational cost used for the TOF estimation. The model is implemented using the latest NVIDA GPU CUDA platform, allowing finer sampling of image space which is more essential for accurate TOF modelling. The high accuracy of the proposed scatter model is validated using Monte Carlo simulations. The model is deployed in our stand-alone image reconstruction pipeline for the Biograph mMR scanner, demonstrating accurate 3D scatter estimates resulting in uniform reconstruction for a high statistics phantom scan
National profile of foot orthotic provision in the United Kingdom, part 2 : podiatrist, orthotist and physiotherapy practices.
Background
A national survey recently provided the first description of foot orthotic provision in the United Kingdom. This article aims to profile and compare the foot orthoses practice of podiatrists, orthotists and physiotherapists within the current provision.
Method
Quantitative data were collected from podiatrists, orthotists and physiotherapists via an online questionnaire. The topics, questions and answers were developed through a series of pilot phases. The professions were targeted through electronic and printed materials advertising the survey. Data were captured over a 10 month period in 2016. Differences between professions were investigated using Chi squared and Fischer’s exact tests, and regression analysis was used to predict the likelihood of each aspect of practice in each of the three professions.
Results
Responses from 357 podiatrists, 93 orthotists and 49 physiotherapists were included in the analysis. The results reveal statistically significant differences in employment and clinical arrangements, the clinical populations treated, and the nature and volume of foot orthoses caseload.
Conclusion
Podiatrists, orthotists and physiotherapists provide foot orthoses to important clinical populations in both a prevention and treatment capacity. Their working context, scope of practice and mix of clinical caseload differs significantly, although there are areas of overlap. Addressing variations in practice could align this collective workforce to national allied health policy
Using a Non-Image-Based Medium-Throughput Assay for Screening Compounds Targeting N-myristoylation in Intracellular Leishmania Amastigotes
We have refined a medium-throughput assay to screen hit compounds for activity against N-myristoylation in intracellular amastigotes of Leishmania donovani. Using clinically-relevant stages of wild type parasites and an Alamar blue-based detection method, parasite survival following drug treatment of infected macrophages is monitored after macrophage lysis and transformation of freed amastigotes into replicative extracellular promastigotes. The latter transformation step is essential to amplify the signal for determination of parasite burden, a factor dependent on equivalent proliferation rate between samples. Validation of the assay has been achieved using the anti-leishmanial gold standard drugs, amphotericin B and miltefosine, with EC50 values correlating well with published values. This assay has been used, in parallel with enzyme activity data and direct assay on isolated extracellular amastigotes, to test lead-like and hit-like inhibitors of Leishmania Nmyristoyl transferase (NMT). These were derived both from validated in vivo inhibitors of Trypanosoma brucei NMT and a recent high-throughput screen against L. donovani NMT. Despite being a potent inhibitor of L. donovani NMT, the activity of the lead T. brucei NMT inhibitor (DDD85646) against L. donovani amastigotes is relatively poor. Encouragingly, analogues of DDD85646 show improved translation of enzyme to cellular activity. In testing the high-throughput L. donovani hits, we observed macrophage cytotoxicity with compounds from two of the four NMT-selective series identified, while all four series displayed low enzyme to cellular translation, also seen here with the T. brucei NMT inhibitors. Improvements in potency and physicochemical properties will be required to deliver attractive lead-like Leishmania NMT inhibitors
Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
Epidemiology characteristics, methodological assessment and reporting of statistical analysis of network meta-analyses in the field of cancer
Because of the methodological complexity of network meta-analyses (NMAs), NMAs may be more vulnerable to methodological risks than conventional pair-wise meta-analysis. Our study aims to investigate epidemiology characteristics, conduction of literature search, methodological quality and reporting of statistical analysis process in the field of cancer based on PRISMA extension statement and modified AMSTAR checklist. We identified and included 102 NMAs in the field of cancer. 61 NMAs were conducted using a Bayesian framework. Of them, more than half of NMAs did not report assessment of convergence (60.66%). Inconsistency was assessed in 27.87% of NMAs. Assessment of heterogeneity in traditional meta-analyses was more common (42.62%) than in NMAs (6.56%). Most of NMAs did not report assessment of similarity (86.89%) and did not used GRADE tool to assess quality of evidence (95.08%). 43 NMAs were adjusted indirect comparisons, the methods used were described in 53.49% NMAs. Only 4.65% NMAs described the details of handling of multi group trials and 6.98% described the methods of similarity assessment. The median total AMSTAR-score was 8.00 (IQR: 6.00-8.25). Methodological quality and reporting of statistical analysis did not substantially differ by selected general characteristics. Overall, the quality of NMAs in the field of cancer was generally acceptable
- …
