1,936 research outputs found
Stripe Fluctuations, Carriers, Spectroscopies, Transport, and BCS-BEC Crossover in the High-T_c Cuprates
The quasiparticles of the high-T_c cuprates are found to consist of:
polaron-like "stripons" carrying charge, and associated primarily with large-U
orbitals in stripe-like inhomogeneities; "quasielectrons" carrying charge and
spin, and associated with hybridized small-U and large-U orbitals; and
"svivons" carrying spin and lattice distortion. It is shown that this
electronic structure leads to the systematic behavior of spectroscopic and
transport properties of the cuprates. High-T_c pairing results from transitions
between pair states of stripons and quasielectrons through the exchange of
svivons. The cuprates fall in the regime of crossover between BCS and
preformed-pairs Bose-Einstein condensation behaviors.Comment: Latex file, 8 pages (new version including a figure
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Smoking and Risk of Kidney Failure in the Singapore Chinese Health Study
Background:The relationship between smoking and risk of kidney failure, especially in people of Chinese origin, is not clear. We analyzed data from the Singapore Chinese Health Study to investigate whether smoking increases the risk of kidney failure.Methods:The Singapore Chinese Health Study is a population-based cohort of 63,257 Chinese adults enrolled between 1993 and 1998. Information on smoking status was collected at baseline. Incidence of kidney failure was identified via record linkage with the nationwide Singapore Renal Registry until 2008. Kidney failure was defined by one of the following: 1) serum creatinine level of more than or equal to 500 μmol/l (5.7 mg/dl), 2) estimated glomerular filtration rate of less than 15 ml/min/1.73 m2, 3) undergoing hemodialysis or peritoneal dialysis, 4) undergone kidney transplantation. Cox proportional hazard regression analysis was performed for the outcome of kidney failure after adjusting for age, education, dialect, herbal medications, body mass index, sex, physician-diagnosed hypertension and diabetes mellitus.Results:The mean age of subjects was 55.6 years at baseline, and 44% were men. Overall 30.6% were ever smokers (current or former) at baseline. A total of 674 incident cases of kidney failure occurred during a median follow-up of 13.3 years. Among men, smokers had a significant increase in the adjusted risk of kidney failure [hazard ratio (HR): 1.29; 95% CI: 1.02-1.64] compared to never smokers. There was a strong dose-dependent association between number of years of smoking and kidney failure, (p for trend = 0.011). The risk decreased with prolonged cessation (quitting ≥10 years since baseline). The number of women smokers was too few for conclusive relationship.Limitation:Information on baseline kidney function was not available.Conclusions:Cigarette smoking is associated with increased risk of kidney failure among Chinese men. The risk appears to be dose- and duration-dependent and modifiable after long duration of cessation. © 2013 Jin et al
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
Modelling the impact of atherosclerosis on drug release and distribution from coronary stents
Although drug-eluting stents (DES) are now widely used for the treatment of coronary heart disease, there remains considerable scope for the development of enhanced designs which address some of the limitations of existing devices. The drug release profile is a key element governing the overall performance of DES. The use of in vitro, in vivo, ex vivo, in silico and mathematical models has enhanced understanding of the factors which govern drug uptake and distribution from DES. Such work has identified the physical phenomena determining the transport of drug from the stent and through tissue, and has highlighted the importance of stent coatings and drug physical properties to this process. However, there is limited information regarding the precise role that the atherosclerotic lesion has in determining the uptake and distribution of drug. In this review, we start by discussing the various models that have been used in this research area, highlighting the different types of information they can provide. We then go on to describe more recent methods that incorporate the impact of atherosclerotic lesions
Highly Tunable Aptasensing Microarrays with Graphene Oxide Multilayers
A highly tunable layer-by-layer (LbL)-assembled graphene oxide (GO) array has been devised for high-throughput multiplex protein sensing. In this array, the fluorescence of different target-bound aptamers labeled with dye is efficiently quenched by GO through fluorescence resonance energy transfer (FRET), and simultaneous multiplex target detection is performed by recovering the quenched fluorescence caused by specific binding between an aptamer and a protein. Thin GO films consisting of 10 bilayers displayed a high quenching ability, yielding over 85% fluorescence quenching with the addition of a 2 mu M dye-labeled aptamer. The limit for human thrombin detection in the 6- and 10-bilayered GO array is estimated to be 0.1 and 0.001 nM, respectively, indicating highly tunable nature of LbL assembled GO multilayers in controlling the sensitivity of graphene-based FRET aptasensor. Furthermore, the GO chip could be reused up to four times simply by cleaning it with distilled water.open4
Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes
Background
Staphylococcal toxicity and antibiotic resistance (STAAR) have been menacing public health. Although vancomycin-resistant Staphylococcus aureus (VRSA) is currently not as widespread as methicillin-resistant S. aureus (MRSA), genome evolution of MRSA into VRSA, including strains engineered within the same patient under anti-staphylococcal therapy, may build up to future public health concern. To further complicate diagnosis, infection control and anti-microbial chemotherapy, non-sterile sites such as the nares and the skin could contain both S. aureus and coagulase-negative staphylococci (CoNS), either of which could harbour mecA the gene driving staphylococcal methicillin-resistance and required for MRSA-VRSA evolution.
Results
A new heptaplex PCR assay has been developed which simultaneously detects seven markers for: i) eubacteria (16S rRNA), ii) Staphylococcus genus (tuf), iii) Staphylococcus aureus (spa), iv) CoNS (cns), v) Panton-Valentine leukocidin (pvl), vi) methicillin resistance (mecA), and vii) vancomycin resistance (vanA). Following successful validation using 255 reference bacterial strains, applicability to analyse clinical samples was evaluated by direct amplification in spiked blood cultures (n = 89) which returned 100 % specificity, negative and positive predictive values. The new assay has LoD of 1.0x103 CFU/mL for the 16S rRNA marker and 1.0x104 CFU/mL for six other markers and completes cycling in less than one hour.
Conclusion
The speed, sensitivity (100 %), NPV (100 %) and PPV (100 %) suggest the new heptaplex PCR assay could be easily integrated into a routine diagnostic microbiology workflow. Detection of the cns marker allows for unique identification of CoNS in mono-microbial and in poly-microbial samples containing mixtures of CoNS and S. aureus without recourse to the conventional elimination approach which is ambiguous. In addition to the SA-CoNS differential diagnostic essence of the new assay, inclusion of vanA primers will allow microbiology laboratories to stay ahead of the emerging MRSA-VRSA evolution. To the best of our knowledge, the new heptaplex PCR assay is the most multiplexed among similar PCR-based assays for simultaneous detection of STAAR
Gate-tunable giant nonreciprocal charge transport in noncentrosymmetric oxide interfaces
A polar conductor, where inversion symmetry is broken, may exhibit directional propagation of itinerant electrons, i.e., the rightward and leftward currents differ from each other, when time-reversal symmetry is also broken. This potential rectification effect was shown to be very weak due to the fact that the kinetic energy is much higher than the energies associated with symmetry breaking, producing weak perturbations. Here we demonstrate the appearance of giant nonreciprocal charge transport in the conductive oxide interface, LaAlO3/SrTiO3, where the electrons are confined to two-dimensions with low Fermi energy. In addition, the Rashba spin???orbit interaction correlated with the sub-band hierarchy of this system enables a strongly tunable nonreciprocal response by applying a gate voltage. The observed behavior of directional response in LaAlO3/SrTiO3 is associated with comparable energy scales among kinetic energy, spin???orbit interaction, and magnetic field, which inspires a promising route to enhance nonreciprocal response and its functionalities in spin orbitronics
Associations between perioperative fluid management and patient outcomes: a multicentre retrospective study
BACKGROUND: Postoperative complications increase hospital length of stay and patient mortality. Optimal perioperative fluid management should decrease patient complications. This study examined associations between fluid volume and noncardiac surgery patient outcomes within a large multicentre US surgical cohort. METHODS: Adults undergoing noncardiac procedures from January 1, 2012 to December 31, 2017, with a postoperative length of stay ≥24 h, were extracted from a large US electronic health record database. Patients were segmented into quintiles based on recorded perioperative fluid volumes with Quintile 3 (Q3) serving as the reference. The primary outcome was defined as a composite of any complications during the surgical admission and a postoperative length of stay ≥7 days. Secondary outcomes included in-hospital mortality, respiratory complications, and acute kidney injury. RESULTS: A total of 35 736 patients met the study criteria. There was a U-shaped pattern with highest (Q5) and lowest (Q1) quintiles of fluid volumes having increased odds of complications and a postoperative length of stay ≥7 days (Q5: odds ratio [OR] 1.51 [95% confidence interval {CI}: 1.30-1.74], P<0.001; Q1: OR 1.20 [95% CI: 1.04-1.38], P=0.011) compared with Q3. Patients in Q5 had greater odds of more severe acute kidney injury compared with Q3 (OR 1.52 [95% CI: 1.22-1.90]; P<0.001) and respiratory complications (OR 1.44 [95% CI: 1.17-1.77]; P<0.001). CONCLUSIONS: Both very high and very low perioperative fluid volumes were associated with an increase in complications after noncardiac surgery
Accelerated expansion from structure formation
We discuss the physics of backreaction-driven accelerated expansion. Using
the exact equations for the behaviour of averages in dust universes, we explain
how large-scale smoothness does not imply that the effect of inhomogeneity and
anisotropy on the expansion rate is small. We demonstrate with an analytical
toy model how gravitational collapse can lead to acceleration. We find that the
conjecture of the accelerated expansion being due to structure formation is in
agreement with the general observational picture of structures in the universe,
and more quantitative work is needed to make a detailed comparison.Comment: 44 pages, 1 figure. Expanded treatment of topics from the Gravity
Research Foundation contest essay astro-ph/0605632. v2: Added references,
clarified wordings. v3: Published version. Minor changes and corrections,
added a referenc
- …
