1,150 research outputs found
Spin densities in the transverse plane and generalized transversity distributions
We show how generalized quark distributions in the nucleon describe the
density of polarized quarks in the impact parameter plane, both for
longitudinal and transverse polarization of the quark and the nucleon. This
density representation entails positivity bounds including chiral-odd
distributions, which tighten the known bounds in the chiral-even sector. Using
the quark equations of motion, we derive relations between the moments of
chiral-odd generalized parton distributions of twist two and twist three. We
exhibit the analogy between polarized quark distributions in impact parameter
space and transverse momentum dependent distribution functions.Comment: 23 pages, 6 eps-figure
Instability driven fragmentation of nanoscale fractal islands
Formation and evolution of fragmentation instabilities in fractal islands,
obtained by deposition of silver clusters on graphite, are studied. The
fragmentation dynamics and subsequent relaxation to the equilibrium shapes are
controlled by the deposition conditions and cluster composition. Sharing common
features with other materials' breakup phenomena, the fragmentation instability
is governed by the length-to-width ratio of the fractal arms.Comment: 5 pages, 3 figures, Physical Review Letters in pres
Leptonic Decays of Heavy Quarks on the Lattice
The status of lattice calculations of heavy-light decay constants and of the
parameter is reviewed. After describing the lattice approach to heavy
quark systems, the main results are discussed, with special emphasis on the
systematic errors in present lattice calculations. A detailed analysis of the
continuum limit for decay constants is performed. The implications of lattice
results on studies of CP violation in the Standard Model are discussed.Comment: Invited review to be published in Int. J. Mod. Phys. A, 63 pages,
LaTeX, ijmpa1.sty (included), 8 postscript figure
Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates
The presence of oligomeric aggregates, which is often observed during the
process of amyloid formation, has recently attracted much attention since it
has been associated with neurodegenerative conditions such as Alzheimer's and
Parkinson's diseases. We provide a description of a sequence-indepedent
mechanism by which polypeptide chains aggregate by forming metastable
oligomeric intermediate states prior to converting into fibrillar structures.
Our results illustrate how the formation of ordered arrays of hydrogen bonds
drives the formation of beta-sheets within the disordered oligomeric aggregates
that form early under the effect of hydrophobic forces. Initially individual
beta-sheets form with random orientations, which subsequently tend to align
into protofilaments as their lengths increases. Our results suggest that
amyloid aggregation represents an example of the Ostwald step rule of first
order phase transitions by showing that ordered cross-beta structures emerge
preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure
Fluctuation-dissipation theorem and flux noise in overdamped Josephson junction arrays
The form of the fluctuation-dissipation theorem for a resistively shunted
Josephson juction array is derived with the help of the method which
explicitely takes into acoount screening effects. This result is used to
express the flux noise power spectrum in terms of frequency dependent sheet
impedance of the array. The relation between noise amplitude and parameters of
the detection coil is analysed for the simplest case of a single-loop coil.Comment: ReVTeX, 8 page
A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation
Nanoparticles introduced in living cells are capable of strongly promoting
the aggregation of peptides and proteins. We use here molecular dynamics
simulations to characterise in detail the process by which nanoparticle
surfaces catalyse the self- assembly of peptides into fibrillar structures. The
simulation of a system of hundreds of peptides over the millisecond timescale
enables us to show that the mechanism of aggregation involves a first phase in
which small structurally disordered oligomers assemble onto the nanoparticle
and a second phase in which they evolve into highly ordered beta-sheets as
their size increases
Massive stars as thermonuclear reactors and their explosions following core collapse
Nuclear reactions transform atomic nuclei inside stars. This is the process
of stellar nucleosynthesis. The basic concepts of determining nuclear reaction
rates inside stars are reviewed. How stars manage to burn their fuel so slowly
most of the time are also considered. Stellar thermonuclear reactions involving
protons in hydrostatic burning are discussed first. Then I discuss triple alpha
reactions in the helium burning stage. Carbon and oxygen survive in red giant
stars because of the nuclear structure of oxygen and neon. Further nuclear
burning of carbon, neon, oxygen and silicon in quiescent conditions are
discussed next. In the subsequent core-collapse phase, neutronization due to
electron capture from the top of the Fermi sea in a degenerate core takes
place. The expected signal of neutrinos from a nearby supernova is calculated.
The supernova often explodes inside a dense circumstellar medium, which is
established due to the progenitor star losing its outermost envelope in a
stellar wind or mass transfer in a binary system. The nature of the
circumstellar medium and the ejecta of the supernova and their dynamics are
revealed by observations in the optical, IR, radio, and X-ray bands, and I
discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry"
Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna
Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure
Telemedicine and Telementoring in Rhinology, Otology, and Laryngology: A Scoping Review
Objective: Telemedicine and telementoring have had a significant boost across all medical and surgical specialties over the last decade and especially during the COVID-19 pandemic. The aim of this scoping review is to synthesize the current use of telemedicine and telementoring in otorhinolaryngology and head and neck surgery. Data Sources: PubMed and Cochrane Library. Review Methods: A scoping review search was conducted, which identified 469 articles. Following full-text screening by 2 researchers, 173 articles were eligible for inclusion and further categorized via relevant subdomains. Conclusions: Virtual encounters and telementoring are the 2 main applications of telemedicine in otolaryngology. These applications can be classified into 7 subdomains. Different ear, nose, and throat subspecialties utilized certain telemedicine applications more than others; for example, almost all articles on patient engagement tools are rhinology based. Overall, telemedicine is feasible, showing similar concordance when compared with traditional methods; it is also cost-effective, with high patient and provider satisfaction. Implications for Practice: Telemedicine in otorhinolaryngology has been widely employed during the COVID-19 pandemic and has a huge potential, especially with regard to its distributing quality care to rural areas. However, it is important to note that with current exponential use, it is equally crucial to ensure security and privacy and integrate HIPAA-compliant systems (Health Insurance Portability and Accountability Act) in the big data era. It is expected that many more applications developed during the pandemic are here to stay and will be refined in years to come
Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer
Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies
- …
