581 research outputs found

    Evaluating the GHG emissions, land use, and water use associated with contemporary dietary patterns in the Republic of Ireland

    Get PDF
    Dietary patterns are intrinsically linked to greenhouse (GHG) emissions, land use, and water use via food production systems. Analysing and comparing contemporary dietary patterns and their environmental impact is critical to identifying which should be promoted to enhance global sustainability. A cross-sectional survey of adult consumption patterns was conducted across Ireland with a representative sample size of 957 respondents. Subsequently, a farm-to-fork life cycle assessment (LCA) was employed via OpenLCA 2.0.4 to assess three primary environmental impacts (global warming, land use, and water use) across the population. Thirteen distinct dietary patterns were analysed: total population, rural, urban, self-reported (omnivore, flexitarian, pescatarian, vegetarian, and vegan), and data-derived (‘meat-focused’, ‘dairy/ovo-focused’, ‘vegetable-focused’, ‘seafood-focused’, and ‘potato-focused’). Mean calculated diet-related GHG emissions were 5.52 kgCO2eq person-1 day-1, with the ‘meat-focused’ diet representing the highest (6.62 kgCO2eq person-1 day-1) and the vegan diet being the lowest (2.0 kgCO2eq person-1 day-1). The ‘meat-focused’ diet was also associated with the highest per capita land use. The estimated mean water usage was 104 L person-1 day-1, with the ‘potato-focused’ diet using the most water and the pescatarian diet using the least. Future (2050) dietary scenarios compared to ‘business-as-usual’ patterns were projected; findings suggest substantial environmental impact reductions could be achieved if segments of the Irish population transition to vegetarian, vegan, and ‘vegetable-focused’ diets. The authors consider that employing data-derived dietary patterns (as opposed to “traditional” dietary classification) in LCA studies may yield increasingly accurate results, as dietary definitions vary significantly between individuals

    Assessing the One Health (ecosystem, animal and human health) Impacts of Current Dietary Patterns Based on Farm-to-Fork Life Cycle Assessment in the Republic of Ireland

    Get PDF
    Food production and dietary patterns play a central role in the myriad interactions among human, animal, and environmental health, emphasising the need for a One Health approach, and this study aims to evaluate dietary patterns within this framework. A cross-sectional dietary survey of adults was undertaken (2021) with a sample size of 957 respondents, representative of the population of Ireland. Subsequently, a farm-to-fork life cycle assessment (LCA) was employed to assess nine human health and environmental impacts (fine particulate matter formation, freshwater and marine ecotoxicity and eutrophication, human carcinogenic and non-carcinogenic toxicity and terrestrial acidification and ecotoxicity) across thirteen distinct dietary patterns: total population, rural, urban, omnivore, flexitarian, pescatarian, vegetarian, vegan, ‘meat-focused’, ‘dairy/ovo-focused’, ‘vegetable-focused’, ‘seafood-focused’, and ‘potato-focused’, employing the daily weight of consumed food (g/per capita/day) as the functional unit. Results indicate the ‘meat-focused’ diet exhibited the highest impact for fine particulate matter formation (8.00 × 10−3 kg PM2.5 eq person−1 day−1), marine eutrophication (6.60 × 10−3 kg N eq person−1 day−1), and terrestrial acidification (0.054 kg SO2 eq person−1 day−1). The ‘seafood-focused’ diet had the highest impact on freshwater (0.056 kg 1,4-DCB person−1 day−1) and marine ecotoxicity (0.069 kg 1,4- DCB person−1 day−1), freshwater eutrophication (8.36 × 10−4 kg P eq person−1 day−1), and human carcinogenic toxicity (0.144 kg 1,4-DCB person−1 day−1). In comparison, the ‘potato-focused’ diet exhibited the highest human non-carcinogenic (6.87 kg 1,4-DCB person−1 day−1) and terrestrial ecotoxicity (2.01 kg 1,4-DCB person−1 day−1). Transitioning from the “mean” diet to a vegan diet showed the highest percent decrease across all nine impacts (60.4 % - 107.3 %), followed by the ‘vegetable-focused’ diet (28.5 % - 66.2 %). Findings indicate adopting sustainable diets—’vegetable-focused’, vegetarian, and vegan—can improve human, environmental, and animal health; however, trade-offs should be considered. Effective consumer communication and policies can enhance awareness of the interconnectedness of diets within the One Health framework, supporting both environmental and health goals

    Resolution studies and performance evaluation of the LHCb VELO upgrade

    Get PDF
    The LHCb detector at CERN is scheduled to undergo an upgrade during the second long shutdown of the LHC. As part of this upgrade, the vertex detector (VELO) will be replaced with a new hybrid pixel detector, based on an evolution of the Timepix ASIC. The performance of this detector should improve upon that achieved by the current VELO, in addition to facilitating the complete detector readout at 40 MHz. As part of the preparation for this upgrade, this thesis presents the results of studies carried out on the single hit resolution of silicon hybrid pixel detectors. The development of a particle beam telescope has been carried out to allow these studies, shown to operate with track rates in excess of 45 kHz and with a pointing resolution at the device under test of less than 2 μm. A wide range of sensor types, thicknesses and resistivities have then been tested under different operating conditions and the results presented, with single hit resolutions varying between 4 μm and 12 μm depending on the conditions and incident angle. The resistivity of the devices is observed to have a significant effect on the single hit resolution, with high resistivity substrates allowing operation at lower bias voltages. This facilitates increased charge sharing, and the corresponding improvement in resolution. At sufficiently large incident angles however, the resolution becomes independent of the electric field, being instead dominated by the sensor geometry and variations in the charge deposited along the track length. No significant differences were found between the various detector technologies (n-on-n, n-on-p and p-on-n) though a difference in performance is expected for low-voltage operation of higher resistivity samples. A simplified model of the physical processes contributing to the detector resolution has been constructed, shown to reasonably reproduce the observed resolution as a function of angle and bias voltage. This model is extrapolated to potential future directions in the design of pixel sensors, highlighting the differences between various technology choices. The integration of the ATLAS FE-I4 ASIC into the telescope has been carried out, and the performance of an unirradiated planar silicon sensor was shown in order to verify this. Efficiency measurements show that the device is fully efficient in the angular range measured. The tracking performance of two irradiated sensors mounted on FE-I4 ASICs has been investigated, in addition to the mapping of collected charge over the pixel unit cell under various biasing conditions and at varying incident angles with respect to the incoming particles. For the sample irradiated to 2e15 1 MeV neq /cm2 the single hit resolution was 12.5 μm at perpendicular incidence, dropping to 8 μm at 22 degrees. The sample irradiated to 4e15 1 MeV neq /cm2 was found to have a resolution of around 13.5 μm, which remained relatively insensitive to the incident track angle. The conclusions drawn suggest that the upgraded VELO detector will be able to overcome the difficult radiation environment if it is able to reach the high voltage operation required. The implementation of these observations in the LHCb simulation environment has allowed some initial studies on the likely degradation of the detector performance to take place, showing that the high tracking efficiency (99.4 % for Long tracks) is likely to be maintained throughout the full lifetime of the upgrade. The impact parameter resolution was not observed to vary significantly. These studies have been carried out alongside simulations to gauge the expected compression that can be achieved in the data transmission of the VELOPix ASIC. Different designs of the front-end have been implemented, leading to the adoption of binary readout for the upgraded VELO. The uniformity of the pixel pitch across the detector has additionally been used to show the sensitivity of the system to multiple scattering, shown to be a credible tool with which to control the event reconstruction in the online LHCb trigger. A reduction of the number of VELO tracks passed to the forward reconstruction of almost 50 % has been shown, for the loss of only 5 % of tracks with momentum above 20 GeV/c. This could potentially replace the lifetime biasing cuts currently envisaged in the trigger

    Identifying Novel Data-Driven Dietary Patterns via Dimensionality Reduction and Associations with Socioeconomic Profile and Health Outcomes in Ireland

    Get PDF
    Dietary patterns and body mass index (BMI) play a significant role in the development of noncommunicable diseases (NCDs), which are the leading cause of mortality worldwide, including Ireland. A cross-sectional survey was conducted across Ireland to collate respondents’ socioeconomic profiles, health status, and dietary patterns with a representative sample size of 957 adult respondents. Principal component analysis (PCA) and statistical analyses were subsequently employed. To the author’s knowledge, this is the first study to use recent (2021) nationally representative data to characterise dietary patterns in Ireland via dimensionality reduction. Five distinct dietary patterns (“meat-focused”, “dairy/ovo-focused”, “vegetable-focused”, “seafood-focused”, and “potatofocused”) were identified and statistically characterised. The “potato-focused” group exhibited the highest mean BMI (26.88 kg/m2), while the “vegetable-focused” group had the lowest (24.68 kg/m2). “Vegetable-focused” respondents were more likely to be associated with a categorically healthy BMI (OR = 1.90) and urban residency (OR = 2.03). Conversely, “meat-focused” respondents were more likely to have obesity (OR = 1.46) and rural residency (OR = 1.72) along with the “potato-focused” group (OR = 2.15). Results show that data-derived dietary patterns may better predict health outcomes than self-reported dietary patterns, and transitioning to diets focusing on vegetables, seafood, and lower meat consumption may improve health

    Combining TCAD and Monte Carlo Methods to Simulate CMOS Pixel Sensors with a Small Collection Electrode using the Allpix Squared Framework

    Full text link
    Combining electrostatic field simulations with Monte Carlo methods enables realistic modeling of the detector response for novel monolithic silicon detectors with strongly non-linear electric fields. Both the precise field description and the inclusion of Landau fluctuations and production of secondary particles in the sensor are crucial ingredients for the understanding and reproduction of detector characteristics. In this paper, a CMOS pixel sensor with small collection electrode design, implemented in a high-resistivity epitaxial layer, is simulated by integrating a detailed electric field model from finite element TCAD into a Monte Carlo based simulation with the Allpix2^2 framework. The simulation results are compared to data recorded in test-beam measurements and very good agreement is found for various quantities such as cluster size, spatial resolution and efficiency. Furthermore, the observables are studied as a function of the intra-pixel incidence position to enable a detailed comparison with the detector behavior observed in data. The validation of such simulations is fundamental for modeling the detector response and for predicting the performance of future prototype designs. Moreover, visualization plots extracted from the charge carrier drift model of the framework can aid in understanding the charge propagation behavior in different regions of the sensor.Comment: 15 pages, 18 figure

    Comparison of small collection electrode CMOS pixel sensors with partial and full lateral depletion of the high-resistivity epitaxial layer

    Get PDF
    Large area silicon pixel trackers are currently under development for the High Luminosity upgrade of the LHC detectors. They are also foreseen for the detectors proposed for the future high energy Compact Linear Collider CLIC. For the CLIC tracker a single hit resolution of 7 μm, a timing resolution of a few nanoseconds and a material budget of 1–2 % of radiation length per detection layer are required. Integrated CMOS technologies are promising candidates to reduce the cost, facilitate the production and to achieve a low material budget. CMOS sensors with a small size of the collection electrode benefit from a small sensor capacitance, resulting in a large signal to noise ratio and a low power consumption. The Investigator is a test-chip developed for the ALICE Inner Tracking System upgrade, implemented in a 180 nm CMOS process with a small collection electrode on a high resistivity epitaxial layer. The Investigator has been produced in different process variants: the standard process and a modified process, where an additional N-layer has been inserted to obtain full lateral depletion. This paper presents a comparison of test-beam results for both process variants, focuses on spatial and timing resolution as well as efficiency measurements

    Time Resolution Studies with Timepix3 Assemblies with Thin Silicon Pixel Sensors

    Full text link
    Timepix3 is a multi-purpose readout ASIC for hybrid pixel detectors. It can measure time and energy simultaneously by employing time-of-arrival (ToA) and time-over-threshold (ToT) techniques. Both methods are systematically affected by timewalk. In this paper, a method for pixel-by-pixel calibration of the time response is presented. Assemblies of Timepix3 ASICs bump-bonded to thin planar silicon pixel sensors of different thicknesses between 50 um and 150 um are calibrated and characterised in particle beams. For minimum ionising particles, time resolutions down to 0.72 ±\pm 0.04 ns are achieved.Comment: preprint submitted to JINST, revision

    Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases 2023

    Get PDF
    Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade increasing evidence from preclinical models suggests that cells, which are not normally resident in the lung can be utilized to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathologic remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "-omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.</p

    Stem Cells, Cell Therapies and Bioengineering in Lung Biology and Diseases 2023

    Get PDF
    Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade increasing evidence from preclinical models suggests that cells, which are not normally resident in the lung can be utilized to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathologic remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "-omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.</p
    corecore