377 research outputs found
Adaptation of intronic homing endonuclease for successful horizontal transmission
oai:kutarr.kochi-tech.ac.jp:00000010journal articl
Strange particle production in proton-proton collisions at TeV with ALICE at the LHC
The production of mesons containing strange quarks (K, ) and both
singly and doubly strange baryons (, Anti-, and
+Anti-) are measured at central rapidity in pp collisions at
= 0.9 TeV with the ALICE experiment at the LHC. The results are
obtained from the analysis of about 250 k minimum bias events recorded in 2009.
Measurements of yields (dN/dy) and transverse momentum spectra at central
rapidities for inelastic pp collisions are presented. For mesons, we report
yields () of 0.184 0.002 stat. 0.006 syst. for K and
0.021 0.004 stat. 0.003 syst. for . For baryons, we find
= 0.048 0.001 stat. 0.004 syst. for , 0.047
0.002 stat. 0.005 syst. for Anti- and 0.0101 0.0020 stat.
0.0009 syst. for +Anti-. The results are also compared with
predictions for identified particle spectra from QCD-inspired models and
provide a baseline for comparisons with both future pp measurements at higher
energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/387
Identification of the TeV Gamma-ray Source ARGO J2031+4157 with the Cygnus Cocoon
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is
positionally consistent with the Cygnus Cocoon discovered by -LAT at GeV
energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected
from November 2007 to January 2013, the angular extension and energy spectrum
of ARGO J2031+4157 are evaluated. After subtracting the contribution of the
overlapping TeV sources, the ARGO-YBJ excess map is fitted with a
two-dimensional Gaussian function in a square region of , finding a source extension =
1.80.5. The observed differential energy spectrum is
photons cm
s TeV, in the energy range 0.2-10 TeV. The angular extension is
consistent with that of the Cygnus Cocoon as measured by -LAT, and the
spectrum also shows a good connection with the one measured in the 1-100 GeV
energy range. These features suggest to identify ARGO J2031+4157 as the
counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in
the star-forming region of Cygnus X, is interpreted as a cocoon of freshly
accelerated cosmic rays related to the Cygnus superbubble. The spectral
similarity with Supernova Remnants indicates that the particle acceleration
inside a superbubble is similar to that in a SNR. The spectral measurements
from 1 GeV to 10 TeV allows for the first time to determine the possible
spectrum slope of the underlying particle distribution. A hadronic model is
adopted to explain the spectral energy distribution.Comment: 16 pages, 3 figures, has been accepted by ApJ for publicatio
Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ
The extended gamma ray source MGRO J1908+06, discovered by the Milagro air
shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ
experiment at TeV energies, with a statistical significance of 6.2 standard
deviations. The peak of the signal is found at a position consistent with the
pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional
Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees,
consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The
observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54
\pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured
gamma ray flux is consistent with the results of the Milagro detector, but is
2-3 times larger than the flux previously derived by H.E.S.S. at energies of a
few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable
excess rate observed by ARGO-YBJ along 4 years of data taking support the
identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula
of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times
the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the
author lis
A metric for predicting binaural speech intelligibility in stationary noise and competing speech maskers
One criterion in the design of binaural sound scenes in audio production is the extent to which the intended speech message is correctly understood. Object-based audio broadcasting systems have permitted sound editors to gain more access to the metadata (e.g., intensity and location) of each sound source, providing better control over speech intelligibility. The current study describes and evaluates a binaural distortion-weighted glimpse proportion metric -- BiDWGP -- which is motivated by better-ear glimpsing and binaural masking level differences. BiDWGP predicts intelligibility from two alternative input forms: either binaural recordings or monophonic recordings from each sound source along with their locations. Two listening experiments were performed with stationary noise and competing speech, one in the presence of a single masker, the other with multiple maskers, for a variety of spatial configurations. Overall, BiDWGP with both input forms predicts listener keyword scores with correlations of 0.95 and 0.91 for single- and multi-masker conditions, respectively. When considering masker type separately, correlations rise to 0.95 and above for both types of maskers. Predictions using the two input forms are very similar, suggesting that BiDWGP can be applied to the design of sound scenes where only individual sound sources and their locations are available
- …
