2,764 research outputs found
Ribosome recycling induces optimal translation rate at low ribosomal availability
Funding statement The authors thank BBSRC (BB/F00513/X1, BB/I020926/1 and DTG) and SULSA for funding. Acknowledgement The authors thank R. Allen, L. Ciandrini, B. Gorgoni and P. Greulich for very helpful discussions and careful reading of the manuscript.Peer reviewedPublisher PD
Comparison of joint space versus task force load distribution optimization for a multiarm manipulator system
It is often proposed that the redundancy in choosing a force distribution for multiple arms grasping a single object should be handled by minimizing a quadratic performance index. The performance index may be formulated in terms of joint torques or in terms of the Cartesian space force/torque applied to the body by the grippers. The former seeks to minimize power consumption while the latter minimizes body stresses. Because the cost functions are related to each other by a joint angle dependent transformation on the weight matrix, it might be argued that either method tends to reduce power consumption, but clearly the joint space minimization is optimal. A comparison of these two options is presented with consideration given to computational cost and power consumption. Simulation results using a two arm robot system are presented to show the savings realized by employing the joint space optimization. These savings are offset by additional complexity, computation time and in some cases processor power consumption
Broad-tailed force distributions and velocity ordering in a heterogeneous membrane model for collective cell migration
Correlated velocity patterns and associated large length-scale transmission
of traction forces have been observed in collective live cell migration as a
response to a "wound". We argue that a simple physical model of a force-driven
heterogeneous elastic membrane sliding over a viscous substrate can
qualitatively explain a few experimentally observed facts: (i) the growth of
velocity ordering which spreads from the wound boundary to the interior, (ii)
the exponential tails of the traction force distributions, and (iii) the
swirling pattern of velocities in the interior of the tissue.Comment: 7 pages and 5 figure
Budding and vesiculation induced by conical membrane inclusions
Conical inclusions in a lipid bilayer generate an overall spontaneous
curvature of the membrane that depends on concentration and geometry of the
inclusions. Examples are integral and attached membrane proteins, viruses, and
lipid domains. We propose an analytical model to study budding and vesiculation
of the lipid bilayer membrane, which is based on the membrane bending energy
and the translational entropy of the inclusions. If the inclusions are placed
on a membrane with similar curvature radius, their repulsive membrane-mediated
interaction is screened. Therefore, for high inclusion density the inclusions
aggregate, induce bud formation, and finally vesiculation. Already with the
bending energy alone our model allows the prediction of bud radii. However, in
case the inclusions induce a single large vesicle to split into two smaller
vesicles, bending energy alone predicts that the smaller vesicles have
different sizes whereas the translational entropy favors the formation of
equal-sized vesicles. Our results agree well with those of recent computer
simulations.Comment: 11 pages, 12 figure
Expected climate change impacts on land and natural resource use in Namibia: exploring economically efficient responses
Lateral migration of a 2D vesicle in unbounded Poiseuille flow
The migration of a suspended vesicle in an unbounded Poiseuille flow is
investigated numerically in the low Reynolds number limit. We consider the
situation without viscosity contrast between the interior of the vesicle and
the exterior. Using the boundary integral method we solve the corresponding
hydrodynamic flow equations and track explicitly the vesicle dynamics in two
dimensions. We find that the interplay between the nonlinear character of the
Poiseuille flow and the vesicle deformation causes a cross-streamline migration
of vesicles towards the center of the Poiseuille flow. This is in a marked
contrast with a result [L.G. Leal, Ann. Rev. Fluid Mech. 12,
435(1980)]according to which the droplet moves away from the center (provided
there is no viscosity contrast between the internal and the external fluids).
The migration velocity is found to increase with the local capillary number
(defined by the time scale of the vesicle relaxation towards its equilibrium
shape times the local shear rate), but reaches a plateau above a certain value
of the capillary number. This plateau value increases with the curvature of the
parabolic flow profile. We present scaling laws for the migration velocity.Comment: 11 pages with 4 figure
Automation and robotics considerations for a lunar base
An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment
Gating-by-tilt of mechanosensitive membrane channels
We propose an alternative mechanism for the gating of biological membrane
channels in response to membrane tension that involves a change in the slope of
the membrane near the channel. Under biological membrane tensions we show that
the energy difference between the closed (tilted) and open (untilted) states
can far exceed kBT and is comparable to what is available under simple
ilational gating. Recent experiments demonstrate that membrane leaflet
asymmetries (spontaneous curvature) can strong effect the gating of some
channels. Such a phenomenon would be more easy to explain under gating-by-tilt,
given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure
Graph theoretic analysis of protein interaction networks of eukaryotes
Thanks to recent progress in high-throughput experimental techniques, the
datasets of large-scale protein interactions of prototypical multicellular
species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila
melanogaster, have been assayed. The datasets are obtained mainly by using the
yeast hybrid method, which contains false-positive and false-negative
simultaneously. Accordingly, while it is desirable to test such datasets
through further wet experiments, here we invoke recent developed network theory
to test such high throughput datasets in a simple way. Based on the fact that
the key biological processes indispensable to maintaining life are universal
across eukaryotic species, and the comparison of structural properties of the
protein interaction networks (PINs) of the two species with those of the yeast
PIN, we find that while the worm and the yeast PIN datasets exhibit similar
structural properties, the current fly dataset, though most comprehensively
screened ever, does not reflect generic structural properties correctly as it
is. The modularity is suppressed and the connectivity correlation is lacking.
Addition of interlogs to the current fly dataset increases the modularity and
enhances the occurrence of triangular motifs as well. The connectivity
correlation function of the fly, however, remains distinct under such interlogs
addition, for which we present a possible scenario through an in silico
modeling.Comment: 7 pages, 6 figures, 2 table
Recommended from our members
An Overview of the Use of Neural Networks for Data Mining Tasks
In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks
- …
