319 research outputs found
Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques
We study the exciton valley relaxation dynamics in single-layer MoS2 by a combination of two nonequilibrium optical techniques: time-resolved Faraday rotation and time-resolved circular dichroism. The depolarization dynamics, measured at 77 K, exhibits a peculiar biexponential decay, characterized by two distinct time scales of 200 fs and 5 ps. The fast relaxation of the valley polarization is in good agreement with a model including the intervalley electron-hole Coulomb exchange as the dominating mechanism. The valley relaxation dynamics is further investigated as a function of temperature and photoinduced exciton density. We measure a strong exciton density dependence of the transient Faraday rotation signal. This indicates the key role of exciton-exciton interactions in MoS2 valley relaxation dynamics
Review on the influence of process parameters in incremental sheet forming
Incremental sheet forming (ISF) is a relatively new flexible forming process. ISF has excellent adaptability to conventional milling machines and requires minimum use of complex tooling, dies and forming press, which makes the process cost-effective and easy to automate for various applications. In the past two decades, extensive research on ISF has resulted in significant advances being made in fundamental understanding and development of new processing and tooling solutions. However, ISF has yet to be fully implemented to mainstream high-value manufacturing industries due to a number of technical challenges, all of which are directly related to ISF process parameters. This paper aims to provide a detailed review of the current state-of-the-art of ISF processes in terms of its technological capabilities and specific limitations with discussions on the ISF process parameters and their effects on ISF processes. Particular attention is given to the ISF process parameters on the formability, deformation and failure mechanics, springback and accuracy and surface roughness. This leads to a number of recommendations that are considered essential for future research effort
Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences
Pleuropulmonary blastoma is a rare childhood malignancy of lung mesenchymal cells that can remain dormant as epithelial cysts or progress to high-grade sarcoma. Predisposing germline loss-of-function DICER1 variants have been described. We sought to uncover additional contributors through whole exome sequencing of 15 tumor/normal pairs, followed by targeted resequencing, miRNA analysis and immunohistochemical analysis of additional tumors. In addition to frequent biallelic loss of TP53 and mutations of NRAS or BRAF in some cases, each case had compound disruption of DICER1: a germline (12 cases) or somatic (3 cases) loss-of-function variant plus a somatic missense mutation in the RNase IIIb domain. 5p-Derived microRNA (miRNA) transcripts retained abnormal precursor miRNA loop sequences normally removed by DICER1. This work both defines a genetic interaction landscape with DICER1 mutation and provides evidence for alteration in miRNA transcripts as a consequence of DICER1 disruption in cancer
Recommended from our members
Mutational heterogeneity in cancer and the search for new cancer genes
Major international projects are now underway aimed at creating a comprehensive catalog of all genes responsible for the initiation and progression of cancer. These studies involve sequencing of matched tumor–normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here, we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false positive findings that overshadow true driver events. Here, we show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumor-normal pairs and discover extraordinary variation in (i) mutation frequency and spectrum within cancer types, which shed light on mutational processes and disease etiology, and (ii) mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and allow true cancer genes to rise to attention
Tumour Cell Heterogeneity.
The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment
The Ring Vortex: Concepts for a Novel Complex Flow Phantom for Medical Imaging
Calibration of medical imaging systems that provide quantitative measures relating to complex physiological flows is challenging. Physical test objects available for the purpose either offer a known simple flow far removed from the complexity of pathology (e.g. parabolic flow in a straight pipe) or complex
relevant flows in which the details of the flow behaviour are unknown. This paper presents the ring vortex as a candidate for a complex flow phantom, since it is marked by inherently complex flow features that are controllable, predictable, reproducible and stable. These characteristics are demonstrated by a combination of analytical, numerical (CFD) and experimental methods. Together they provide a consistent perspective on ring vortex behaviour and highlight qualities relevant to phantom design. Discussion of the results indicates that a liquid phantom based on the ring vortex may have merit as a complex flow phantom for multimodal imaging. Furthermore, availability of such a flow reference may also serve as a benchmark for quality assurance of simulation methodologies
Network‐scale effects of invasive species on spatially‐structured amphibian populations
Understanding the factors affecting the dynamics of spatially‐structured populations (SSP) is a central topic of conservation and landscape ecology. Invasive alien species are increasingly important drivers of the dynamics of native species. However, the impacts of invasives are often assessed at the patch scale, while their effects on SSP dynamics are rarely considered. We used long‐term abundance data to test whether the impact of invasive crayfish on subpopulations can also affect the whole SSP dynamics, through their influence on source populations. From 2010 to 2018, we surveyed a network of 58 ponds and recorded the abundance of Italian agile frog clutches, the occurrence of an invasive crayfish, and environmental features. Using Bayesian hierarchical models, we assessed relationhips between frog abundance in ponds and a) environmental features; b) connectivity within the SSP; c) occurrence of invasive species at both the patch‐ and the SSP‐levels. If spatial relationships between ponds were overlooked, we did not detect effects of crayfish presence on frog abundance or trends. When we jointly considered habitat, subpopulation and SSP features, processes acting at all these levels affected frog abundance. At the subpopulation scale, frog abundance in a year was related to habitat features, but was unrelated to crayfish occurrence at that site during the previous year. However, when we considered the SSP level, we found a strong negative relationship between frog abundance in a given site and crayfish frequency in surrounding wetlands during the previous year. Hence, SSP‐level analyses can identify effects that would remain unnoticed when focussing on single patches. Invasive species can affect population dynamics even in not invaded patches, through the degradation of subpopulation networks. Patch‐scale assessments of the impact of invasive species can thus be insufficient: predicting the long‐term interplay between invasive and native populations requires landscape‐level approaches accounting for the complexity of spatial interactions
- …
