788 research outputs found
Effect of dimensionality on the charge-density-wave in few-layers 2H-NbSe
We investigate the charge density wave (CDW) instability in single and double
layers, as well as in the bulk 2H-NbSe. We demonstrate that the density
functional theory correctly describes the metallic CDW state in the bulk
2H-NbSe. We predict that both mono- and bilayer NbSe undergo a CDW
instability. However, while in the bulk the instability occurs at a momentum
, in free-standing layers it
occurs at . Furthermore, while
in the bulk the CDW leads to a metallic state, in a monolayer the ground state
becomes semimetallic, in agreement with recent experimental data. We elucidate
the key role that an enhancement of the electron-phonon matrix element at
plays in forming the CDW ground state.Comment: 4 pages 5 figure
Effects of magnetism and doping on the electron-phonon coupling in BaFeAs
We calculate the effect of local magnetic moments on the electron-phonon
coupling in BaFeAs using the density functional perturbation
theory. We show that the magnetism enhances the total electron-phonon coupling
by , up to , still not enough to explain the
high critical temperature, but strong enough to have a non-negligible effect on
superconductivity, for instance, by frustrating the coupling with spin
fluctuations and inducing order parameter nodes. The enhancement comes mostly
from a renormalization of the electron-phonon matrix elements. We also
investigate, in the rigid band approximation, the effect of doping, and find
that versus doping does not mirror the behavior of the density of
states; while the latter decreases upon electron doping, the former does not,
and even increases slightly.Comment: 4 pages, 3 figure
Poisson equation and self-consistent periodical Anderson model
We show that the formally exact expression for the free energy (with a
non-relativistic Hamiltonian) for the correlated metal generates the Poisson
equation within the saddle-point approximation for the electric potential,
where the charge density automatically includes correlations. In this
approximation the problem is reduced to the self-consistent periodical Anderson
model (SCPAM). The parameter of the mixing interaction in this formulation have
to be found self-consistently together with the correlated charge density. The
factors, calculated by Irkhin, for the mixing interaction, which reflect the
structure of the many-electron states of the \f-ion involved, arise
automatically in this formulation and are quite sensitive to the specific
element we are interested in. We also discuss the definitions of the mixing
interaction for the mapping from ab initio to model calculations.Comment: 25 pages, no figure
Effects of phase transitions in devices actuated by the electromagnetic vacuum force
We study the influence of the electromagnetic vacuum force on the behaviour
of a model device based on materials, like germanium tellurides, that undergo
fast and reversible metal-insulator transitions on passing from the crystalline
to the amorphous phase. The calculations are performed at finite temperature
and fully accounting for the behaviour of the material dielectric functions.
The results show that the transition can be exploited to extend the distance
and energy ranges under which the device can be operated without undergoing
stiction phenomena. We discuss the approximation involved in adopting the
Casimir expression in simulating nano- and micro- devices at finite
temperature
Saturation of electrical resistivity
Resistivity saturation is observed in many metallic systems with a large
resistivity, i.e., when the resistivity has reached a critical value, its
further increase with temperature is substantially reduced. This typically
happens when the apparent mean free path is comparable to the interatomic
separations - the Ioffe-Regel condition. Recently, several exceptions to this
rule have been found. Here, we review experimental results and early theories
of resistivity saturation. We then describe more recent theoretical work,
addressing cases both where the Ioffe-Regel condition is satisfied and where it
is violated. In particular we show how the (semiclassical) Ioffe-Regel
condition can be derived quantum-mechanically under certain assumptions about
the system and why these assumptions are violated for high-Tc cuprates and
alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/andersen/saturation
Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes
We study the static screening in a Hubbard-like model using quantum Monte
Carlo. We find that the random phase approximation is surprisingly accurate
almost up to the Mott transition. We argue that in alkali-doped Fullerenes the
Coulomb pseudopotential is not very much reduced by retardation
effects. Therefore efficient screening is important in reducing
sufficiently to allow for an electron-phonon driven superconductivity. In this
way the Fullerides differ from the conventional picture, where retardation
effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
Spin liquid ground state in a two dimensional non-frustrated spin model
We consider an exchange model describing two isotropic spin-1/2 Heisenberg
antiferromagnets coupled by a quartic term on the square lattice. The model is
relevant for systems with orbital degeneracy and strong electron-vibron
coupling in the large Hubbard repulsion limit, and is known to show a
spin-Peierls-like dimerization in one dimension. In two dimensions we calculate
energy gaps, susceptibilities, and correlation functions with a Green's
Function Monte Carlo. We find a finite spin gap and no evidence of any kind of
order. We conclude that the ground state is, most likely, a spin liquid of
resonating valence bonds.Comment: 4 pages, 4 figures, Revte
Insights into GABA receptor signalling in TM3 Leydig cells
gamma-Aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A) receptor subunits, but also bind the GABA agonist {[}H-3] muscimol with a binding affinity in the range reported for other endocrine cells (K-d = 2.740 +/- 0.721 nM). However, they exhibit a low B-max value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl- currents, changes in resting membrane potential, intracellular Ca2+ or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an untypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Base
Long range Neel order in the triangular Heisenberg model
We have studied the Heisenberg model on the triangular lattice using several
Quantum Monte Carlo (QMC) techniques (up to 144 sites), and exact
diagonalization (ED) (up to 36 sites). By studying the spin gap as a function
of the system size we have obtained a robust evidence for a gapless spectrum,
confirming the existence of long range Neel order. Our best estimate is that in
the thermodynamic limit the order parameter m= 0.41 +/- 0.02 is reduced by
about 59% from its classical value and the ground state energy per site is
e0=-0.5458 +/- 0.0001 in unit of the exchange coupling. We have identified the
important ground state correlations at short distance.Comment: 4 pages, RevTeX + 4 encapsulated postscript figure
- …
