20 research outputs found

    Synthesis, characterization, biological determination and catalytic evaluation of ruthenium(<scp>ii</scp>) complexes bearing benzimidazole-based NHC ligands in transfer hydrogenation catalysis

    Full text link
    A new series of ruthenium (ii) N-heterocyclic carbene complexes has been synthesized via transmetalation. The obtained complexes were applied to transfer hydrogenation of ketone derivatives.</p

    Ru(<scp>ii</scp>)–N-heterocyclic carbene complexes: synthesis, characterization, transfer hydrogenation reactions and biological determination

    No full text
    A series of ruthenium(ii) complexes with N-heterocyclic carbene ligands were successfully synthesized by transmetalation reactions between silver(i) N-heterocyclic carbene complexes and [RuCl2(p-cymene)]2in dichloromethane under Ar conditions.</p

    Novel mutations confirm that COL11A2 is responsible for autosomal recessive non-syndromic hearing loss DFNB53

    No full text
    Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous. The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher–Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X–Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype–phenotype correlation for the associated phenotypes and clinical follow-up

    A mutation in SLC22A4 encoding an organic cation transporter expressed in the cochlea strial endothelium causes human recessive non-syndromic hearing loss DFNB60

    No full text
    The high prevalence/incidence of hearing loss (HL) in humans makes it the most common sensory defect. The majority of the cases are of genetic origin. Non-syndromic hereditary HL is extremely heterogeneous. Genetic approaches have been instrumental in deciphering genes that are crucial for auditory function. In this study, we first used NADf chip to exclude the implication of known North-African mutations in HL in a large consanguineous Tunisian family (FT13) affected by autosomal recessive non-syndromic HL (ARNSHL). We then performed genome-wide linkage analysis and assigned the deafness gene locus to ch:5q23.2-31.1, corresponding to DFNB60 ARNSHL locus. Moreover, we performed whole-exome sequencing on FT13 patient DNA and uncovered aminoacid substitution p.Cys113Tyr in SLC22A4, a transporter of organic cations, cosegregating with HL in FT13 and therefore the cause of ARNSHL DFNB60. We also screened a cohort of small Tunisian HL families and uncovered an additional deaf proband of consanguineous parents that is homozygous for p.Cys113Tyr carried by the same microsatellite marker haplotype as in FT13, indicating that this mutation is ancestral. Using immunofluorescence, we found that Slc22a4 is expressed in stria vascularis (SV) endothelial cells of rodent cochlea and targets their apical plasma membrane. We also found Slc22a4 transcripts in our RNA-seq library from purified primary culture of mouse SV endothelial cells. Interestingly, p.Cys113Tyr mutation affects the trafficking of the transporter and severely alters Ergothioneine uptake. We conclude that SLC22A4 is an organic cation transporter of the SV endothelium that is essential for hearing, and its mutation causes DFNB60 form of HL
    corecore