18,245 research outputs found

    An alternative derivation of the gravitomagnetic clock effect

    Get PDF
    The possibility of detecting the gravitomagnetic clock effect using artificial Earth satellites provides the incentive to develop a more intuitive approach to its derivation. We first consider two test electric charges moving on the same circular orbit but in opposite directions in orthogonal electric and magnetic fields and show that the particles take different times in describing a full orbit. The expression for the time difference is completely analogous to that of the general relativistic gravitomagnetic clock effect in the weak-field and slow-motion approximation. The latter is obtained by considering the gravitomagnetic force as a small classical non-central perturbation of the main central Newtonian monopole force. A general expression for the clock effect is given for a spherical orbit with an arbitrary inclination angle. This formula differs from the result of the general relativistic calculations by terms of order c^{-4}.Comment: LaTex2e, 11 pages, 1 figure, IOP macros. Submitted to Classical and Quantum Gravit

    The properties of the star-forming interstellar medium at z = 0.84-2.23 from HiZELS : mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies.

    Get PDF
    We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine Hα-selected galaxies at z = 0.84-2.23 drawn from the HiZELS narrow-band survey. These galaxies have star formation rates of 1-27 M⊙ yr-1 and are therefore representative of the typical high-redshift star-forming population. Our ˜kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionized gas is in large, rotating discs. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities. We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar-mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor of 2.5 between z = 2 and 0, whilst the rest-frame B-band luminosity has decreased by a factor of ˜ 6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B band of Δ(M/LB)/(M/LB)z=0 ˜ 3.5 between z = 1.5 and 0, with most of the evolution occurring below z = 1. We also use the spatial variation of [N II]/Hα to show that the metallicity of the ionized gas in these galaxies declines monotonically with galactocentric radius, with an average Δ log(O/H)/ΔR = -0.027 ± 0.005 dex kpc-1. This gradient is consistent with predictions for high-redshift disc galaxies from cosmologically based hydrodynamic simulations

    Barrier and internal wave contributions to the quantum probability density and flux in light heavy-ion elastic scattering

    Get PDF
    We investigate the properties of the optical model wave function for light heavy-ion systems where absorption is incomplete, such as α+40\alpha + ^{40}Ca and α+16\alpha + ^{16}O around 30 MeV incident energy. Strong focusing effects are predicted to occur well inside the nucleus, where the probability density can reach values much higher than that of the incident wave. This focusing is shown to be correlated with the presence at back angles of a strong enhancement in the elastic cross section, the so-called ALAS (anomalous large angle scattering) phenomenon; this is substantiated by calculations of the quantum probability flux and of classical trajectories. To clarify this mechanism, we decompose the scattering wave function and the associated probability flux into their barrier and internal wave contributions within a fully quantal calculation. Finally, a calculation of the divergence of the quantum flux shows that when absorption is incomplete, the focal region gives a sizeable contribution to nonelastic processes.Comment: 16 pages, 15 figures. RevTeX file. To appear in Phys. Rev. C. The figures are only available via anonynous FTP on ftp://umhsp02.umh.ac.be/pub/ftp_pnt/figscat

    Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters

    Full text link
    (Abridged) Theoretical models that include only gravitationally-driven processes fail to match the observed mean X-ray properties of clusters. As a result, there has recently been increased interest in models in which either radiative cooling or entropy injection play a central role in mediating the properties of the intracluster medium. Both sets of models give reasonable fits to the mean properties of clusters, but cooling only models result in fractions of cold baryons in excess of observationally established limits and the simplest entropy injection models do not treat the "cooling core" structure present in many clusters and cannot account for entropy profiles revealed by recent X-ray observations. We consider models that marry radiative cooling with entropy injection, and confront model predictions for the global and structural properties of massive clusters with the latest X-ray data. The models successfully and simultaneously reproduce the observed L-T and L-M relations, yield detailed entropy, surface brightness, and temperature profiles in excellent agreement with observations, and predict a cooled gas fraction that is consistent with observational constraints. The model also provides a possible explanation for the significant intrinsic scatter present in the L-T and L-M relations and provides a natural way of distinguishing between clusters classically identified as "cooling flow" clusters and dynamically relaxed "non-cooling flow" clusters. The former correspond to systems that had only mild levels (< 300 keV cm^2) of entropy injection, while the latter are identified as systems that had much higher entropy injection. This is borne out by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical Journa

    y scaling in electron-nucleus scattering

    Get PDF
    Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A

    ``Good Propagation'' Constraints on Dual Invariant Actions in Electrodynamics and on Massless Fields

    Get PDF
    We present some consequences of non-anomalous propagation requirements on various massless fields. Among the models of nonlinear electrodynamics we show that only Maxwell and Born-Infeld also obey duality invariance. Separately we show that, for actions depending only on the F_\mn^2 invariant, the permitted models have L1+F2L \sim \sqrt{1 + F^2}. We also characterize acceptable vector-scalar systems. Finally we find that wide classes of gravity models share with Einstein the null nature of their characteristic surfaces.Comment: 11 pages, LaTeX, no figure

    The VAST Survey - IV. A wide brown dwarf companion to the A3V star ζ\zeta Delphini

    Full text link
    We report the discovery of a wide co-moving substellar companion to the nearby (D=67.5±1.1D=67.5\pm1.1 pc) A3V star ζ\zeta Delphini based on imaging and follow-up spectroscopic observations obtained during the course of our Volume-limited A-Star (VAST) multiplicity survey. ζ\zeta Del was observed over a five-year baseline with adaptive optics, revealing the presence of a previously-unresolved companion with a proper motion consistent with that of the A-type primary. The age of the ζ\zeta Del system was estimated as 525±125525\pm125 Myr based on the position of the primary on the colour-magnitude and temperature-luminosity diagrams. Using intermediate-resolution near-infrared spectroscopy, the spectrum of ζ\zeta Del B is shown to be consistent with a mid-L dwarf (L5±25\pm2), at a temperature of 1650±2001650\pm200 K. Combining the measured near-infrared magnitude of ζ\zeta Del B with the estimated temperature leads to a model-dependent mass estimate of 50±1550\pm15 MJup_{\rm Jup}, corresponding to a mass ratio of q=0.019±0.006q=0.019\pm0.006. At a projected separation of 910±14910\pm14 au, ζ\zeta Del B is among the most widely-separated and extreme-mass ratio substellar companions to a main-sequence star resolved to-date, providing a rare empirical constraint of the formation of low-mass ratio companions at extremely wide separations.Comment: 12 pages, 11 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Society, 2014 September 25. Revised to incorporate typographical errors noted during the proofing proces

    Two dimensional modulational instability in photorefractive media

    Full text link
    We study theoretically and experimentally the modulational instability of broad optical beams in photorefractive nonlinear media. We demonstrate the impact of the anisotropy of the nonlinearity on the growth rate of periodic perturbations. Our findings are confirmed by experimental measurements in a strontium barium niobate photorefractive crystal.Comment: 8 figure

    On the Possibility of Measuring the Gravitomagnetic Clock Effect in an Earth Space-Based Experiment

    Full text link
    In this paper the effect of the post-Newtonian gravitomagnetic force on the mean longitudes ll of a pair of counter-rotating Earth artificial satellites following almost identical circular equatorial orbits is investigated. The possibility of measuring it is examined. The observable is the difference of the times required to ll in passing from 0 to 2π\pi for both senses of motion. Such gravitomagnetic time shift, which is independent of the orbital parameters of the satellites, amounts to 5×107\times 10^{-7} s for Earth; it is cumulative and should be measured after a sufficiently high number of revolutions. The major limiting factors are the unavoidable imperfect cancellation of the Keplerian periods, which yields a constraint of 102^{-2} cm in knowing the difference between the semimajor axes aa of the satellites, and the difference II of the inclinations ii of the orbital planes which, for i0.01i\sim 0.01^\circ, should be less than 0.0060.006^\circ. A pair of spacecrafts endowed with a sophisticated intersatellite tracking apparatus and drag-free control down to 109^{-9} cm s2^{-2} Hz1/2^{-{1/2}} level might allow to meet the stringent requirements posed by such a mission.Comment: LaTex2e, 22 pages, no tables, 1 figure, 38 references. Final version accepted for publication in Classical and Quantum Gravit
    corecore