276 research outputs found
Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters
Three-dimensional lanthanide-organic frameworks formulated as (CH3)2NH2[Ln(pydc)2] · 1/2H2O [Ln3+ ) Eu3+ (1a)
or Er3+ (1b); pydc2- corresponds to the diprotonated residue of 2,5-pyridinedicarboxylic acid (H2pydc)], [Er4(OH)4(pydc)4(H2O)3] ·H2O
(2), and [PrIII
2PrIV
1.25O(OH)3(pydc)3] (3) have been isolated from typical solvothermal (1a and 1b in N,N-dimethylformamide -
DMF) and hydrothermal (2 and 3) syntheses. Materials were characterized in the solid state using single-crystal X-ray diffraction,
thermogravimetric analysis, vibrational spectroscopy (FT-IR and FT-Raman), electron microscopy, and CHN elemental analysis.
While synthesis in DMF promotes the formation of centrosymmetric dimeric units, which act as building blocks in the construction
of anionic ∞
3{[Ln(pydc)2]-} frameworks having the channels filled by the charge-balancing (CH3)2NH2
+ cations generated in situ by
the solvolysis of DMF, the use of water as the solvent medium promotes clustering of the lanthanide centers: structures of 2 and 3
contain instead tetrameric [Er4(μ3-OH)4]8+ and hexameric |Pr6(μ3-O)2(μ3-OH)6| clusters which act as the building blocks of the networks,
and are bridged by the H2-xpydcx- residues. It is demonstrated that this modular approach is reflected in the topological nature of
the materials inducing 4-, 8-, and 14-connected uninodal networks (the nodes being the centers of gravity of the clusters) with
topologies identical to those of diamond (family 1), and framework types bct (for 2) and bcu-x (for 3), respectively. The
thermogravimetric studies of compound 3 further reveal a significant weight increase between ambient temperature and 450 °C with
this being correlated with the uptake of oxygen from the surrounding environment by the praseodymium oxide inorganic core
Application of metal − organic frameworks
The burgeoning field of metal-organic frameworks or porous coordination polymers has received increasing interest in recent years. In the last decade these microporous materials have found several applications including storage and separation of gases, sensors, catalysis and functional materials. In order to better design new metal-organic frameworks and porous coordination polymers with specific functionalities a fundamental issue is to achieve a basic understanding of the relationship between molecular parameters and structures, preferred adsorption sites and properties by using using modern theoretical methods. The focus of this mini-review is a description of the potential and emerging applications of metal-organic framework
Transcriptome Analysis of the Arabidopsis Megaspore Mother Cell Uncovers the Importance of RNA Helicases for Plant Germline Development
Germ line specification is a crucial step in the life cycle of all organisms. For sexual plant reproduction, the megaspore mother cell (MMC) is of crucial importance: it marks the first cell of the plant “germline” lineage that gets committed to undergo meiosis. One of the meiotic products, the functional megaspore, subsequently gives rise to the haploid, multicellular female gametophyte that harbours the female gametes. The MMC is formed by selection and differentiation of a single somatic, sub-epidermal cell in the ovule. The transcriptional network underlying MMC specification and differentiation is largely unknown. We provide the first transcriptome analysis of an MMC using the model plant Arabidopsis thaliana with a combination of laser-assisted microdissection and microarray hybridizations. Statistical analyses identified an over-representation of translational regulation control pathways and a significant enrichment of DEAD/DEAH-box helicases in the MMC transcriptome, paralleling important features of the animal germline. Analysis of two independent T-DNA insertion lines suggests an important role of an enriched helicase, MNEME (MEM), in MMC differentiation and the restriction of the germline fate to only one cell per ovule primordium. In heterozygous mem mutants, additional enlarged MMC-like cells, which sometimes initiate female gametophyte development, were observed at higher frequencies than in the wild type. This closely resembles the phenotype of mutants affected in the small RNA and DNA-methylation pathways important for epigenetic regulation. Importantly, the mem phenotype shows features of apospory, as female gametophytes initiate from two non-sister cells in these mutants. Moreover, in mem gametophytic nuclei, both higher order chromatin structure and the distribution of LIKE HETEROCHROMATIN PROTEIN1 were affected, indicating epigenetic perturbations. In summary, the MMC transcriptome sets the stage for future functional characterization as illustrated by the identification of MEM, a novel gene involved in the restriction of germline fate
Carbon Dynamics, Development and Stress Responses in Arabidopsis: Involvement of the APL4 Subunit of ADP-Glucose Pyrophosphorylase (Starch Synthesis)
An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4 mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and oxidative stress responses
Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed
Biallelic NAA60 variants with impaired n-terminal acetylation capacity cause autosomal recessive primary familial brain calcifications
Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning
Extra-Intestinal Manifestations of Familial Adenomatous Polyposis
Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder, which results from a germ line mutation in the APC (adenomatous polyposis coli) gene. FAP is characterized by the formation of hundreds to thousands of colorectal adenomatous polyps. Although the development of colorectal cancer stands out as the most prevalent complication, FAP is a multisystem disorder of growth. This means, it is comparable to other diseases such as the MEN syndromes, Von Hippel-Lindau disease and neurofibromatosis. However, the incidence of many of its clinical features is much lower. Therefore, a specialized multidisciplinary approach to optimize health care—common for other disorders—is not usually taken for FAP patients. Thus, clinicians that care for and counsel members of high-risk families should have familiarity with all the extra-intestinal manifestations of this syndrome. FAP-related complications, for which medical attention is essential, are not rare and their estimated lifetime risk presumably exceeds 30%. Affected individuals can develop thyroid and pancreatic cancer, hepatoblastomas, CNS tumors (especially medulloblastomas), and various benign tumors such as adrenal adenomas, osteomas, desmoid tumors and dental abnormalities. Due to improved longevity, as a result of better prevention of colorectal cancer, the risk of these clinical problems will further increase
Seronegative Neuromyelitis Optica Spectrum - The challenges on disease definition and pathogenesis
Neuromyelitis optica spectrum disorders (NMOSD) are characterized by severe optic neuritis and/or longitudinally extensive transverse myelitis, and some brain lesions are also unique to NMOSD. Serum autoantibodies against aquaporin-4 (AQP4) are detected in most cases of NMOSD. However, some patients with NMOSD remain seronegative despite repetitive testing during attacks with highly sensitive cell-based assays. The differential diagnosis of NMOSD is not restricted to multiple sclerosis and it includes many diseases that can produce longitudinally extensive myelitis and/or optic neuritis. We review the clinical features, imaging, and laboratory findings that can be helpful on the diagnostic work-up, discuss the differences between AQP4 antibody positive and negative patients with NMOSD, including features of NMOSD with antibodies against myelin oligodendrocyte glycoprotein
- …
