81 research outputs found
Infrared Spectroscopic Study of Vibrational Modes across the Orthorhombic Tetragonal Phase Transition in Methylammonium Lead Halide Single Crystals
Single crystals of the methylammonium MA lead halides MAPbI3, MAPbBr3, and MAPbCl3 have been investigated using infrared spectroscopy with the aim of analyzing structural and dynamical aspects of processes that enable the ordering of the MA molecule in the orthorhombic crystal structure of these hybrid perovskites. Our temperature dependent studies were focused on the analysis of the CH NH rocking, C N stretching, and CH NH bending modes of the MA molecule in the 800 1750 cm 1 frequency range. They deliver a direct comparison of the behaviors of the three halides on crossing the orthorhombic tetragonal phase transition in MA lead halide single crystals. Drastic changes of all vibrational modes close to the phase transition were clearly observed. Additional spectral features that were not discussed previously are pointed out. The transformation of the two dimensional orthorhombic hydrogen bond layers into a more three dimensional arrangement in the tetragonal phase seems to be an important feature providing deeper insights into the mechanisms that lead to a free rotating MA molecule in the inorganic host structure. The change of the molecule site symmetry in the tetragonal crystal structure seems to be an important feature of the orthorhombic tetragonal phase transition. For low temperatures, it can be stated that the iodide is stronger influenced by hydrogen bonding than the bromide and the chlorid
Effects of hydrostaticity on the structural stability of carbonates at lower mantle pressures the case study of dolomite
We have conducted high pressure far-infrared absorbance and Raman spectroscopic investigations on a natural iron-free dolomite sample up to 40 GPa. Comparison between the present observations and literature results unraveled the effect of hydrostatic conditions on the high pressure dolomite polymorph adopted close to 40 GPa, i.e. the triclinic Dol-IIIc modification. In particular, non-hydrostatic conditions impose structural disorder at these pressures, whereas hydrostatic conditions allow the detection of an ordered Dol-IIIc vibrational response. Hence, hydrostatic conditions appear to be a key ingredient for modeling
carbon subduction at lower mantle conditions. Our
complementary first-principles calculations verified the far-infrared vibrational response of the ambient- and high pressure dolomite phases.This study was partly supported by a Grant from Deutsche Forschungsgemeinschaft (DFG) within the
Research Unit FOR2125 CarboPaT under Grants KO1260/16 and JA1469/9
Operando Insights on the Degradation Mechanisms of Rhenium-doped and Undoped Molybdenum Disulfide Nanocatalysts for Electrolyzer Applications
MoS2 nanostructures are promising catalysts for proton-exchange-membrane (PEM) electrolyzers to replace expensive noble metals. Their broadscale application demands high activity for the hydrogen evolution reaction (HER) as well as good durability. Doping in MoS2 is commonly applied to enhance the HER activity of MoS2-based nanocatalysts, but the effect of dopants in the electrochemical and structural stability is yet to be discussed. Herein, we correlate operando electrochemical measurements to the structural evolution of the materials down to the nanometric scale by identical location electron microscopy and spectroscopy. Different degradation mechanisms at first electrolyte contact, open circuit stabilization and HER conditions are identified for MoS2 nanocatalysts with and without Rhenium doping. Our results demonstrate that doping in MoS2 nanocatalysts can not only improve their HER activity, but also their stability. Doping of MoS2-based nanocatalysts is validated as a promising strategy to follow for the continuous improvement of high performance and durable PEM electrolyzers
Operando Insights on the Degradation Mechanisms of Rhenium-Doped and Undoped Molybdenum Disulfide Nanocatalysts During Hydrogen Evolution Reaction and Open-Circuit Conditions
Isostructural second-order phase transition of b-Bi2O3 at high pressures: an experimental and theoretical study
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp507826jWe report a joint experimental and theoretical study of the structural and vibrational properties of synthetic sphaerobismoite (beta-Bi2O3) at high pressures in which room-temperature angle-dispersive X-ray diffraction (XRD) and Raman scattering measurements have been complemented with ab initio total energy and lattice dynamics calculations. Striking changes in Raman spectra were observed around 2 GPa, whereas X-ray diffraction measurements evidence no change in the tetragonal symmetry of the compound up to 20 GPa; however, a significant change exists in the compressibility when increasing pressure above 2 GPa. These features have been understood by means of theoretical calculations, which show that beta-Bi2O3 undergoes a pressure-induced isostructural phase transition near 2 GPa. In the new isostructural beta' phase, the Bi3+ and O2- environments become more regular than those in the original beta phase because of the strong decrease in the activity of the lone electron pair of Bi above 2 GPa. Raman measurements and theoretical calculations provide evidence of the second-order nature of the pressure-induced isostructural transition. Above 20 GPa, XRD measurements suggest a partial amorphization of the sample despite Raman measurements still show weak peaks, probably related to a new unknown phase which remains up to 27 GPa. On pressure release, XRD patterns and Raman spectra below 2 GPa correspond to elemental Bi-I, thus evidencing a pressure-induced decomposition of the sample during downstroke.Financial support from the Spanish Consolider Ingenio 2010 Program (MALTA Project CSD2007-00045) is acknowledged. This work was also supported by Brazilian Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) under Project 201050/2012-9, Spanish MICINN under Projects MAT2010-21270-004-01/03/04 and MAT2013-46649-C4-2/3/4-P, Spanish MINECO under Project CTQ2012-36253-C03-02, and from Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. JAS. acknowledges Juan de la Cierva fellowship program for financial support.Pereira, ALJ.; Sans Tresserras, JÁ.; Vilaplana Cerda, RI.; Gomis, O.; Manjón Herrera, FJ.; Rodriguez-Hernandez, P.; Muñoz, A.... (2014). Isostructural second-order phase transition of b-Bi2O3 at high pressures: an experimental and theoretical study. Journal of Physical Chemistry C. 118(40):23189-23201. https://doi.org/10.1021/jp507826jS23189232011184
Effect of composition on the Raman response of the Cu<sub>2</sub>(Fe<sub>x</sub>Zn<sub>1-x</sub>)SnS<sub>4</sub> and Cu<sub>2</sub>(Mn<sub>x</sub>Zn<sub>1-x</sub>)SnS<sub>4</sub> solid solutions
We have examined the effect of composition on the Raman-active vibrational response of the Cu2(Fe x Zn1-x)SnS4 and Cu2(Mn x Zn1-x)SnS4 solid solution series at ambient conditions. Based on these results we were able to identify the phase boundaries of the respective kesterite-type and stannite-type structures adopted by these compounds as a function of composition. In the case of Cu2(Fe x Zn1-x)SnS4, our observations correlate very well with earlier reports. For the Cu2(Mn x Zn1-x)SnS4 series, on the other hand, we were able to clearly pinpoint the kesterite↔stannite transition for intermediate compositions for the first time, indicating that Raman spectroscopy can serve as an efficient method for monitoring subtle structural transitions in these systems. © 2022 Walter de Gruyter GmbH, Berlin/Boston 2022
Presenilin 1 and cadherins: Stabilization of cell-cell adhesion and proteolysis-dependent regulation of transcription
Presenilin-1 (PS1) has gained intensive attention in relation to Alzheimer's disease, since it has been shown that PS1 mutations are linked to familial Alzheimer's disease (FAD), and that PS1 is a member of the high molecular weight complex of γ-secretase, which generates the carboxyl end of β-amyloid peptide (γ-cleavage). A parallel line of evidence suggests that upon formation of cell-cell contacts, presenilin colocalizes with cadherins at the cell surface and stabilizes the cadherin-based adhesion complex. Under conditions stimulating cell-cell dissociation, cadherins are processed by a PS1/γ-secretase activity, promoting disassembly of adherens junctions, and resulting in the increase of cytosolic β-catenin, which is an important regulator of the Wnt/Wingless signaling pathway. PS1 also controls the cleavage of a number of transmembrane proteins at the interface of their transmembrane and cytosolic domains (ε-cleavage), producing intracellular fragments with a putative transcriptional role. Remarkably, cleavage of N-cadherin by PS1 produces an intracellular fragment that downregulates CREB-mediated transcription, indicating a role of PS1 in gene expression. PS1 mutations associated with FAD abolish production of the N-cadherin intracellular fragment and thus fail to suppress CREB-dependent transcription. These findings suggest an alternative explanation for FAD that is separate from the widely accepted 'amyloid hypothesis': dysfunction in transcription regulatory mechanisms. Copyright © 2004 S. Karger AG, Basel
- …
