3,338 research outputs found
A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model
The free fermion condition of the six-vertex model provides a 5 parameter
sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter
into the eigenfunctions of the transfer matrices of the model decouple, hence
allowing explicit solutions. Such conditions arose originally in early
field-theoretic S-matrix approaches. Here we provide a combinatorial
explanation for the condition in terms of a generalised Gessel-Viennot
involution. By doing so we extend the use of the Gessel-Viennot theorem,
originally devised for non-intersecting walks only, to a special weighted type
of \emph{intersecting} walk, and hence express the partition function of
such walks starting and finishing at fixed endpoints in terms of the single
walk partition functions
Difference system for Selberg correlation integrals
The Selberg correlation integrals are averages of the products
with respect to the Selberg
density. Our interest is in the case , , when this
corresponds to the -th moment of the corresponding characteristic
polynomial. We give the explicit form of a matrix linear
difference system in the variable which determines the average, and we
give the Gauss decomposition of the corresponding matrix.
For a positive integer the difference system can be used to efficiently
compute the power series defined by this average.Comment: 21 page
Analytic solutions of the 1D finite coupling delta function Bose gas
An intensive study for both the weak coupling and strong coupling limits of
the ground state properties of this classic system is presented. Detailed
results for specific values of finite are given and from them results for
general are determined. We focus on the density matrix and concomitantly
its Fourier transform, the occupation numbers, along with the pair correlation
function and concomitantly its Fourier transform, the structure factor. These
are the signature quantities of the Bose gas. One specific result is that for
weak coupling a rational polynomial structure holds despite the transcendental
nature of the Bethe equations. All these new results are predicated on the
Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by
Phys. Rev.
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
{\bf -Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}
It has recently been emphasized that all known exact evaluations of gap
probabilities for classical unitary matrix ensembles are in fact
-functions for certain Painlev\'e systems. We show that all exact
evaluations of gap probabilities for classical orthogonal matrix ensembles,
either known or derivable from the existing literature, are likewise
-functions for certain Painlev\'e systems. In the case of symplectic
matrix ensembles all exact evaluations, either known or derivable from the
existing literature, are identified as the mean of two -functions, both
of which correspond to Hamiltonians satisfying the same differential equation,
differing only in the boundary condition. Furthermore the product of these two
-functions gives the gap probability in the corresponding unitary
symmetry case, while one of those -functions is the gap probability in
the corresponding orthogonal symmetry case.Comment: AMS-Late
A random matrix decimation procedure relating to
Classical random matrix ensembles with orthogonal symmetry have the property
that the joint distribution of every second eigenvalue is equal to that of a
classical random matrix ensemble with symplectic symmetry. These results are
shown to be the case of a family of inter-relations between eigenvalue
probability density functions for generalizations of the classical random
matrix ensembles referred to as -ensembles. The inter-relations give
that the joint distribution of every -st eigenvalue in certain
-ensembles with is equal to that of another
-ensemble with . The proof requires generalizing a
conditional probability density function due to Dixon and Anderson.Comment: 19 pages, 1 figur
Solitons in the Calogero model for distinguishable particles
We consider a large two-family Calogero model in the Hamiltonian,
collective-field approach. The Bogomol'nyi limit appears and the corresponding
solutions are given by the static-soliton configurations. Solitons from
different families are localized at the same place. They behave like a paired
hole and lump on the top of the uniform vacuum condensates, depending on the
values of the coupling strengths. When the number of particles in the first
family is much larger than that of the second family, the hole solution goes to
the vortex profile already found in the one-family Calogero model.Comment: 14 pages, no figures, late
Growth models, random matrices and Painleve transcendents
The Hammersley process relates to the statistical properties of the maximum
length of all up/right paths connecting random points of a given density in the
unit square from (0,0) to (1,1). This process can also be interpreted in terms
of the height of the polynuclear growth model, or the length of the longest
increasing subsequence in a random permutation. The cumulative distribution of
the longest path length can be written in terms of an average over the unitary
group. Versions of the Hammersley process in which the points are constrained
to have certain symmetries of the square allow similar formulas. The derivation
of these formulas is reviewed. Generalizing the original model to have point
sources along two boundaries of the square, and appropriately scaling the
parameters gives a model in the KPZ universality class. Following works of Baik
and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled
cumulative distribution, in which a particular Painlev\'e II transcendent plays
a prominent role.Comment: 27 pages, 5 figure
An adjoint for likelihood maximization
The process of likelihood maximization can be found in many different areas of computational modelling. However, the construction of such models via likelihood maximization requires the solution of a difficult multi-modal optimization problem involving an expensive O(n3) factorization. The optimization techniques used to solve this problem may require many such factorizations and can result in a significant bottle-neck. This article derives an adjoint formulation of the likelihood employed in the construction of a kriging model via reverse algorithmic differentiation. This adjoint is found to calculate the likelihood and all of its derivatives more efficiently than the standard analytical method and can therefore be utilised within a simple local search or within a hybrid global optimization to accelerate convergence and therefore reduce the cost of the likelihood optimization
Hypergeometric solutions to Schr\"odinger equations for the quantum Painlev\'e equations
We consider Schr\"odinger equations for the quantum Painlev\'e equations. We
present hypergeometric solutions of the Schr\"odinger equations for the quantum
Painlev\'e equations, as particular solutions. We also give a representation
theoretic correspondence between Hamiltonians of the Schr\"odinger equations
for the quantum Painlev\'e equations and those of the KZ equation or the
confluent KZ equations.Comment: 17 pages; Journal of Mathematical Physics (Vol.52, Issue 8) 201
- …
