3,338 research outputs found

    A Combinatorial Interpretation of the Free Fermion Condition of the Six-Vertex Model

    Full text link
    The free fermion condition of the six-vertex model provides a 5 parameter sub-manifold on which the Bethe Ansatz equations for the wavenumbers that enter into the eigenfunctions of the transfer matrices of the model decouple, hence allowing explicit solutions. Such conditions arose originally in early field-theoretic S-matrix approaches. Here we provide a combinatorial explanation for the condition in terms of a generalised Gessel-Viennot involution. By doing so we extend the use of the Gessel-Viennot theorem, originally devised for non-intersecting walks only, to a special weighted type of \emph{intersecting} walk, and hence express the partition function of NN such walks starting and finishing at fixed endpoints in terms of the single walk partition functions

    Difference system for Selberg correlation integrals

    Full text link
    The Selberg correlation integrals are averages of the products s=1ml=1n(xszl)μs\prod_{s=1}^m\prod_{l=1}^n (x_s - z_l)^{\mu_s} with respect to the Selberg density. Our interest is in the case m=1m=1, μ1=μ\mu_1 = \mu, when this corresponds to the μ\mu-th moment of the corresponding characteristic polynomial. We give the explicit form of a (n+1)×(n+1)(n+1) \times (n+1) matrix linear difference system in the variable μ\mu which determines the average, and we give the Gauss decomposition of the corresponding (n+1)×(n+1)(n+1) \times (n+1) matrix. For μ\mu a positive integer the difference system can be used to efficiently compute the power series defined by this average.Comment: 21 page

    Analytic solutions of the 1D finite coupling delta function Bose gas

    Full text link
    An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite NN are given and from them results for general NN are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these new results are predicated on the Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by Phys. Rev.

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    {\bf τ\tau-Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}

    Full text link
    It has recently been emphasized that all known exact evaluations of gap probabilities for classical unitary matrix ensembles are in fact τ\tau-functions for certain Painlev\'e systems. We show that all exact evaluations of gap probabilities for classical orthogonal matrix ensembles, either known or derivable from the existing literature, are likewise τ\tau-functions for certain Painlev\'e systems. In the case of symplectic matrix ensembles all exact evaluations, either known or derivable from the existing literature, are identified as the mean of two τ\tau-functions, both of which correspond to Hamiltonians satisfying the same differential equation, differing only in the boundary condition. Furthermore the product of these two τ\tau-functions gives the gap probability in the corresponding unitary symmetry case, while one of those τ\tau-functions is the gap probability in the corresponding orthogonal symmetry case.Comment: AMS-Late

    A random matrix decimation procedure relating β=2/(r+1)\beta = 2/(r+1) to β=2(r+1)\beta = 2(r+1)

    Full text link
    Classical random matrix ensembles with orthogonal symmetry have the property that the joint distribution of every second eigenvalue is equal to that of a classical random matrix ensemble with symplectic symmetry. These results are shown to be the case r=1r=1 of a family of inter-relations between eigenvalue probability density functions for generalizations of the classical random matrix ensembles referred to as β\beta-ensembles. The inter-relations give that the joint distribution of every (r+1)(r+1)-st eigenvalue in certain β\beta-ensembles with β=2/(r+1)\beta = 2/(r+1) is equal to that of another β\beta-ensemble with β=2(r+1)\beta = 2(r+1). The proof requires generalizing a conditional probability density function due to Dixon and Anderson.Comment: 19 pages, 1 figur

    Solitons in the Calogero model for distinguishable particles

    Full text link
    We consider a large N,- N, two-family Calogero model in the Hamiltonian, collective-field approach. The Bogomol'nyi limit appears and the corresponding solutions are given by the static-soliton configurations. Solitons from different families are localized at the same place. They behave like a paired hole and lump on the top of the uniform vacuum condensates, depending on the values of the coupling strengths. When the number of particles in the first family is much larger than that of the second family, the hole solution goes to the vortex profile already found in the one-family Calogero model.Comment: 14 pages, no figures, late

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    An adjoint for likelihood maximization

    No full text
    The process of likelihood maximization can be found in many different areas of computational modelling. However, the construction of such models via likelihood maximization requires the solution of a difficult multi-modal optimization problem involving an expensive O(n3) factorization. The optimization techniques used to solve this problem may require many such factorizations and can result in a significant bottle-neck. This article derives an adjoint formulation of the likelihood employed in the construction of a kriging model via reverse algorithmic differentiation. This adjoint is found to calculate the likelihood and all of its derivatives more efficiently than the standard analytical method and can therefore be utilised within a simple local search or within a hybrid global optimization to accelerate convergence and therefore reduce the cost of the likelihood optimization

    Hypergeometric solutions to Schr\"odinger equations for the quantum Painlev\'e equations

    Full text link
    We consider Schr\"odinger equations for the quantum Painlev\'e equations. We present hypergeometric solutions of the Schr\"odinger equations for the quantum Painlev\'e equations, as particular solutions. We also give a representation theoretic correspondence between Hamiltonians of the Schr\"odinger equations for the quantum Painlev\'e equations and those of the KZ equation or the confluent KZ equations.Comment: 17 pages; Journal of Mathematical Physics (Vol.52, Issue 8) 201
    corecore