297 research outputs found
Derivative based global sensitivity measures
The method of derivative based global sensitivity measures (DGSM) has
recently become popular among practitioners. It has a strong link with the
Morris screening method and Sobol' sensitivity indices and has several
advantages over them. DGSM are very easy to implement and evaluate numerically.
The computational time required for numerical evaluation of DGSM is generally
much lower than that for estimation of Sobol' sensitivity indices. This paper
presents a survey of recent advances in DGSM concerning lower and upper bounds
on the values of Sobol' total sensitivity indices . Using these
bounds it is possible in most cases to get a good practical estimation of the
values of . Several examples are used to illustrate an
application of DGSM
Derivative based global sensitivity measures
International audienceThe method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices . Using these bounds it is possible in most cases to get a good practical estimation of the values of . Several examples are used to illustrate an application of DGSM
Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment
The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data
Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle
interactions with a detector containing a total of 10 tonnes of liquid xenon
within a double-vessel cryostat. The large mass and proximity of the cryostat
to the active detector volume demand the use of material with extremely low
intrinsic radioactivity. We report on the radioassay campaign conducted to
identify suitable metals, the determination of factors limiting radiopure
production, and the selection of titanium for construction of the LZ cryostat
and other detector components. This titanium has been measured with activities
of U~1.6~mBq/kg, U~0.09~mBq/kg,
Th~~mBq/kg, Th~~mBq/kg, K~0.54~mBq/kg, and Co~0.02~mBq/kg (68\% CL).
Such low intrinsic activities, which are some of the lowest ever reported for
titanium, enable its use for future dark matter and other rare event searches.
Monte Carlo simulations have been performed to assess the expected background
contribution from the LZ cryostat with this radioactivity. In 1,000 days of
WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute
only a mean background of (stat)(sys) counts.Comment: 13 pages, 3 figures, accepted for publication in Astroparticle
Physic
Recommended from our members
Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe 136
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (>600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years
Multiferroic (Nd,Fe)-doped PbTiO3 ceramics with coexistent ferroelectricity and magnetism at room temperature
We report the structural, dielectric, elastic, ferroelectric and ferromagnetic properties of multiferroic (Nd, Fe)-doped PbTiO3 perovskite ceramics with composition (Pb 0.88 Nd 0.08 )(Ti 0.94 Fe 0.04 Mn 0.02 )O 3 , prepared by different solid state reaction methods: the first one based on a single-stage calcination (Method I) and the second based on a double-stage calcination (Method II). Structural, dielectric and anelastic measurements evidenced a double phase transition for samples prepared by Method I, which has been attributed to phase separation. This phase separation has been confirmed also by TEM and HRTEM investigations. Samples prepared by Method II showed a single phase transition from paraelectric to ferroelectric phase. We found coexistent ferroelectric and ferromagnetic properties, also at room-temperature, but only for ceramics prepared by Method II. The crucial role of calcination process for avoiding phase separation and obtaining homogeneous structures with ferroelectric and ferromagnetic order is underlined
Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volume demand the use of material with extremely low intrinsic radioactivity. We report on the radioassay campaign conducted to identify suitable metals, the determination of factors limiting radiopure production, and the selection of titanium for construction of the LZ cryostat and other detector components. This titanium has been measured with activities of U~1.6~mBq/kg, U~0.09~mBq/kg, Th~~mBq/kg, Th~~mBq/kg, K~0.54~mBq/kg, and Co~0.02~mBq/kg (68\% CL). Such low intrinsic activities, which are some of the lowest ever reported for titanium, enable its use for future dark matter and other rare event searches. Monte Carlo simulations have been performed to assess the expected background contribution from the LZ cryostat with this radioactivity. In 1,000 days of WIMP search exposure of a 5.6-tonne fiducial mass, the cryostat will contribute only a mean background of (stat)(sys) counts
Assessing the effects of survey-inherent disturbance on primate detectability: Recommendations for line transect distance sampling (advance online)
Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment
LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP.
Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2
mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020
- …
