6,093 research outputs found
Spin polarizations and spin Hall currents in a two-dimensional electron gas with magnetic impurities
We consider a two-dimensional electron gas in the presence of Rashba
spin-orbit coupling, and study the effects of magnetic s-wave impurities and
long-range non-magnetic disorder on the spin-charge dynamics of the system. We
focus on voltage induced spin polarizations and their relation to spin Hall
currents. Our results are obtained using the quasiclassical Green function
technique, and hold in the full range of the disorder parameter .Comment: 5 pages, 2 figures. References added, minor stylistic modification
Quasiclassical approach to the spin-Hall effect in the two-dimensional electron gas
We study the spin-charge coupled transport in a two-dimensional electron
system using the method of quasiclassical (-integrated) Green's functions.
In particular we derive the Eilenberger equation in the presence of a generic
spin-orbit field. The method allows us to study spin and charge transport from
ballistic to diffusive regimes and continuity equations for spin and charge are
automatically incorporated. In the clean limit we establish the connection
between the spin-Hall conductivity and the Berry phase in momentum space. For
finite systems we solve the Eilenberger equation numerically for the special
case of the Rashba spin-orbit coupling and a two-terminal geometry. In
particular, we calculate explicitly the spin-Hall induced spin polarization in
the corners, predicted by Mishchenko et al. [13]. Furthermore we find universal
spin currents in the short-time dynamics after switching on the voltage across
the sample, and calculate the corresponding spin-Hall polarization at the
edges. Where available, we find perfect agreement with analytical results.Comment: 9 pages, 6 figure
ATLAS RPC Quality Assurance results at INFN Lecce
The main results of the quality assurance tests performed on the Resistive
Plate Chamber used by the ATLAS experiment at LHC as muon trigger chambers are
reported and discussed.
Since July 2004, about 270 RPC units has been certified at INFN Lecce site
and delivered to CERN, for being integrated in the final muon station of the
ATLAS barrel region.
We show the key RPC characteristics which qualify the performance of this
detector technology as muon trigger chamber in the harsh LHC enviroments.
These are dark current, chamber efficiency, noise rate, gas volume
tomography, and gas leakage.Comment: Comments: 6 pages, 1 table, 9 figures Proceedings of XXV Physics in
Collision-Prague, Czech Republic, 6-9 July 200
Gravity of a static massless scalar field and a limiting Schwarzschild-like geometry
We study a set of static solutions of the Einstein equations in presence of a
massless scalar field and establish their connection to the Kantowski-Sachs
cosmological solutions based on some kind of duality transformations. The
physical properties of the limiting case of an empty hyperbolic spacetime
(pseudo-Schwarzschild geometry) are analyzed in some detail.Comment: 13 pages, 4 figure
Observational Constraints on the Generalized Chaplygin Gas
In this paper we study a quintessence cosmological model in which the dark
energy component is considered to be the Generalized Chaplygin Gas and the
curvature of the three-geometry is taken into account. Two parameters
characterize this sort of fluid, the and the parameters. We use
different astronomical data for restricting these parameters. It is shown that
the constraint agrees enough well with the astronomical
observations.Comment: Accepted by IJMPD; 18 pages; 10 Figure
Inverse Spin Hall Effect and Anomalous Hall Effect in a Two-Dimensional Electron Gas
We study the coupled dynamics of spin and charge currents in a
two-dimensional electron gas in the transport diffusive regime. For systems
with inversion symmetry there are established relations between the spin Hall
effect, the anomalous Hall effect and the inverse spin Hall effect. However, in
two-dimensional electron gases of semiconductors like GaAs, inversion symmetry
is broken so that the standard arguments do not apply. We demonstrate that in
the presence of a Rashba type of spin-orbit coupling (broken structural
inversion symmetry) the anomalous Hall effect, the spin Hall and inverse spin
Hall effect are substantially different effects. Furthermore we discuss the
inverse spin Hall effect for a two-dimensional electron gas with Rashba and
Dresselhaus spin-orbit coupling; our results agree with a recent experiment.Comment: 5 page
Study of second lightest neutralino spin measurement with ATLAS detector at LHC
One of the goals of the ATLAS experiment at the CERN Large Hadron Collider is to search for evidence of Supersymmetry (SUSY) signals. If SUSY would be discovered, it will be fundamental to measure the spin of the new particles in order to prove that they are indeed supersymmetric partners. Left-handed squark cascade decay to second lightest neutralino which further decays to slepton can represent a good opportunity for SUSY particles' spin measurement. Assuming the neutralino spin to be 1/2, the invariant mass distributions of some detectable final products of the reactions have to be charge asymmetric. In the present work the detectability of this charge asymmetry is analysed in the stau-coannihilation region and in the bulk region of the minimal Supergravity parameter space allowed by the latest experimental constraints. The criteria used to isolate the decay chain of interest and to reject the background, coming from both Standard Model and different SUSY decay channels, are described as obtained by suitable optimizations on Monte Carlo samples produced with the ATLAS fast simulation. The estimates of the residual contributions to background and of the applied cut efficiencies are presented. Results on charge asymmetry are then shown and discussed
Neutralino spin measurement with ATLAS detector at LHC
Minimal Supergravity (mSUGRA) [1] Supersimmetry breaking mechanism is a leading candidate for yielding new physics beyond the Standard Model (SM). Within mSUGRA framework masses, mixings and decays of all SUSY and Higgs particles are determined in terms of four input parameters and a sign: the common mass m 0 of scalar particles at the grand unification scale, the common fermion mass m 1/2, the common trilinear coupling A 0, the ratio of the Higgs vacuum expectation values tan β and the sign of the supersymmetric Higgs mass parameter μ. Once a signal of a physics beyond the Standard Model is seen at LHC, it will be fundamental to measure properties of new particles, like spin, in order to prove that they are indeed supersymmetric partners. The present work [2] is based on the spin analysis method proposed in [3] and allows the discrimination of different hypotheses for spin assignments. Some studies [4, 5] show that this method can also be used for the discrimination of SUSY from an Universal Extra Dimensions model which can mimick low energy SUSY at hadron colliders. In this report two selected points inside stau-coannihilation and bulk regions of the allowed mSUGRA parameter space are considered. Fast simulation [6] of the ATLAS detector was performed in order to investigate the feasibility of supersymmetric particles’ spin measurement
Remarks on a Proposed Super-Kamiokande Test for Quantum Gravity Induced Decoherence Effects
Lisi, Marrone, and Montanino have recently proposed a test for quantum
gravity induced decoherence effects in neutrino oscillations observed at
Super-Kamiokande. We comment here that their equations have the same
qualitative form as the energy conserving objective state vector reduction
equations discussed by a number of authors. However, using the Planckian
parameter value proposed to explain state vector reduction leads to a neutrino
oscillation effect many orders of magnitude smaller than would be detectable at
Super-Kamiokande. Similar estimates hold for the Ghirardi, Rimini, and Weber
spontaneous localization approach to state vector reduction, and our remarks
are relevant as well to proposed meson and meson tests of gravity
induced decoherence.Comment: 10 pages, plain Tex, no figure
- …
