397 research outputs found
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Labor and delivery service use: indigenous women’s preference and the health sector response in the Chiapas Highlands of Mexico
Measurement of the t-channel single top quark production cross section in pp collisions at √s =7 TeV
Peer reviewe
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk outcome pairs, and new data on risk exposure levels and risk outcome associations.
Methods: We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings: In 2017,34.1 million (95% uncertainty interval [UI] 33.3-35.0) deaths and 121 billion (144-1.28) DALYs were attributable to GBD risk factors. Globally, 61.0% (59.6-62.4) of deaths and 48.3% (46.3-50.2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10.4 million (9.39-11.5) deaths and 218 million (198-237) DALYs, followed by smoking (7.10 million [6.83-7.37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6.53 million [5.23-8.23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4.72 million [2.99-6.70] deaths and 148 million [98.6-202] DALYs), and short gestation for birthweight (1.43 million [1.36-1.51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4.9% (3.3-6.5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23.5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18.6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013
BACKGROUND: The Millennium Declaration in 2000 brought special global attention to HIV, tuberculosis, and malaria through the formulation of Millennium Development Goal (MDG) 6. The Global Burden of Disease 2013 study provides a consistent and comprehensive approach to disease estimation for between 1990 and 2013, and an opportunity to assess whether accelerated progress has occured since the Millennium Declaration. METHODS: To estimate incidence and mortality for HIV, we used the UNAIDS Spectrum model appropriately modified based on a systematic review of available studies of mortality with and without antiretroviral therapy (ART). For concentrated epidemics, we calibrated Spectrum models to fit vital registration data corrected for misclassification of HIV deaths. In generalised epidemics, we minimised a loss function to select epidemic curves most consistent with prevalence data and demographic data for all-cause mortality. We analysed counterfactual scenarios for HIV to assess years of life saved through prevention of mother-to-child transmission (PMTCT) and ART. For tuberculosis, we analysed vital registration and verbal autopsy data to estimate mortality using cause of death ensemble modelling. We analysed data for corrected case-notifications, expert opinions on the case-detection rate, prevalence surveys, and estimated cause-specific mortality using Bayesian meta-regression to generate consistent trends in all parameters. We analysed malaria mortality and incidence using an updated cause of death database, a systematic analysis of verbal autopsy validation studies for malaria, and recent studies (2010-13) of incidence, drug resistance, and coverage of insecticide-treated bednets. FINDINGS: Globally in 2013, there were 1·8 million new HIV infections (95% uncertainty interval 1·7 million to 2·1 million), 29·2 million prevalent HIV cases (28·1 to 31·7), and 1·3 million HIV deaths (1·3 to 1·5). At the peak of the epidemic in 2005, HIV caused 1·7 million deaths (1·6 million to 1·9 million). Concentrated epidemics in Latin America and eastern Europe are substantially smaller than previously estimated. Through interventions including PMTCT and ART, 19·1 million life-years (16·6 million to 21·5 million) have been saved, 70·3% (65·4 to 76·1) in developing countries. From 2000 to 2011, the ratio of development assistance for health for HIV to years of life saved through intervention was US$4498 in developing countries. Including in HIV-positive individuals, all-form tuberculosis incidence was 7·5 million (7·4 million to 7·7 million), prevalence was 11·9 million (11·6 million to 12·2 million), and number of deaths was 1·4 million (1·3 million to 1·5 million) in 2013. In the same year and in only individuals who were HIV-negative, all-form tuberculosis incidence was 7·1 million (6·9 million to 7·3 million), prevalence was 11·2 million (10·8 million to 11·6 million), and number of deaths was 1·3 million (1·2 million to 1·4 million). Annualised rates of change (ARC) for incidence, prevalence, and death became negative after 2000. Tuberculosis in HIV-negative individuals disproportionately occurs in men and boys (versus women and girls); 64·0% of cases (63·6 to 64·3) and 64·7% of deaths (60·8 to 70·3). Globally, malaria cases and deaths grew rapidly from 1990 reaching a peak of 232 million cases (143 million to 387 million) in 2003 and 1·2 million deaths (1·1 million to 1·4 million) in 2004. Since 2004, child deaths from malaria in sub-Saharan Africa have decreased by 31·5% (15·7 to 44·1). Outside of Africa, malaria mortality has been steadily decreasing since 1990. INTERPRETATION: Our estimates of the number of people living with HIV are 18·7% smaller than UNAIDS's estimates in 2012. The number of people living with malaria is larger than estimated by WHO. The number of people living with HIV, tuberculosis, or malaria have all decreased since 2000. At the global level, upward trends for malaria and HIV deaths have been reversed and declines in tuberculosis deaths have accelerated. 101 countries (74 of which are developing) still have increasing HIV incidence. Substantial progress since the Millennium Declaration is an encouraging sign of the effect of global action. FUNDING: Bill & Melinda Gates Foundation
Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study
Background
Chronic kidney disease progression has been linked to pro-inflammatory cytokines and markers of inflammation. These markers are also elevated in end-stage renal disease (ESRD), which constitutes a serious public health problem.
Objective
To investigate whether single nucleotide polymorphisms (SNPs) located in genes related to immune and inflammatory processes, could be associated with ESRD development.
Design and methods
A retrospective case-control study was carried out on 276 patients with ESRD and 288 control subjects. Forty-eight SNPs were genotyped via SNPlex platform. Logistic regression was used to assess the relationship between each sigle polymorphism and the development of ESRD.
Results
Four polymorphisms showed association with ESRD: rs1801275 in the interleukin 4 receptor (IL4R) gene (OR: 0.66 (95%CI=0.46-0.95); p=0.025; overdominant model), rs4586 in chemokine (C-C motif) ligand 2 (CCL2) gene (OR: 0.70 (95%CI=0.54-0.90); p=0.005; additive model), rs301640 located in an intergenic binding site for signal transducer and activator of transcription 4 (STAT4) (OR: 1.82 (95%CI=1.17-2.83); p=0.006; additive model) and rs7830 in the nitric oxide synthase 3 (NOS3) gene (OR: 1.31 (95%CI=1.01-1.71); p=0.043; additive model). After adjusting for multiple testing, results lost significance.
Conclusion
Our preliminary data suggest that four genetic polymorphisms located in genes related to inflammation and immune processes could help to predict the risk of developing ESRD.This work was supported by grants from Instituto de Salud Carlos III (Ref: PI08/0738 and PI11/00245) to SR and Junta de Castilla y Leon (Ref: GRS 234/A/08) to ET. MAJS is supported by a grant from Instituto de Salud Carlos III (CM10/00105).Jimenez-Sousa, MA.; López, E.; Fernandez-Rodriguez, A.; Tamayo, E.; Fernández-Navarro, P.; Segura Roda, L.; Heredia, M.... (2012). Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study. BMC Medical Genetics. 13(58):1-6. https://doi.org/10.1186/1471-2350-13-58S161358Otero A, de Francisco A, Gayoso P, Garcia F: Prevalence of chronic renal disease in Spain: results of the EPIRCE study. Nefrologia. 2010, 30 (1): 78-86.Kottgen A: Genome-wide association studies in nephrology research. Am J Kidney Dis. 2010, 56 (4): 743-758. 10.1053/j.ajkd.2010.05.018.Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, Jong PE, Coresh J, de Jong PE, El-Nahas M, et al: Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes in both general and high-risk populations. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011, 80 (1): 93-104. 10.1038/ki.2010.531.Reich HN, Gladman DD, Urowitz MB, Bargman JM, Hladunewich MA, Lou W, Fan SC, Su J, Herzenberg AM, Cattran DC, et al: Persistent proteinuria and dyslipidemia increase the risk of progressive chronic kidney disease in lupus erythematosus. Kidney Int. 2011, 9 (8): 914-920.Rao M, Wong C, Kanetsky P, Girndt M, Stenvinkel P, Reilly M, Raj DS: Cytokine gene polymorphism and progression of renal and cardiovascular diseases. Kidney Int. 2007, 72 (5): 549-556. 10.1038/sj.ki.5002391.Munshi R, Hsu C, Himmelfarb J: Advances in understanding ischemic acute kidney injury. BMC Med. 2011, 9 (1): 11-10.1186/1741-7015-9-11.Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, et al: New loci associated with kidney function and chronic kidney disease. Nat Genet. 2010, 42 (5): 376-384. 10.1038/ng.568.Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS, Gale DP, Wass MN, Ahmadi KR, Bakker SJ, et al: Genetic loci influencing kidney function and chronic kidney disease. Nat Genet. 2010, 42 (5): 373-375. 10.1038/ng.566.Ribases M, Ramos-Quiroga JA, Sanchez-Mora C, Bosch R, Richarte V, Palomar G, Gastaminza X, Bielsa A, Arcos-Burgos M, Muenke M, et al: Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes Brain Behav. 2010, 10 (2): 149-157.Sole X, Guino E, Valls J, Iniesta R, Moreno V: SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006, 22 (15): 1928-1929. 10.1093/bioinformatics/btl268.Fried L, Solomon C, Shlipak M, Seliger S, Stehman-Breen C, Bleyer AJ, Chaves P, Furberg C, Kuller L, Newman A: Inflammatory and prothrombotic markers and the progression of renal disease in elderly individuals. J Am Soc Nephrol. 2004, 15 (12): 3184-3191. 10.1097/01.ASN.0000146422.45434.35.Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, Krolewski AS: Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol. 2008, 19 (4): 789-797. 10.1681/ASN.2007050556.Nakamura E, Megumi Y, Kobayashi T, Kamoto T, Ishitoya S, Terachi T, Tachibana M, Matsushiro H, Habuchi T, Kakehi Y, et al: Genetic polymorphisms of the interleukin-4 receptor alpha gene are associated with an increasing risk and a poor prognosis of sporadic renal cell carcinoma in a Japanese population. Clin Cancer Res. 2002, 8 (8): 2620-2625.Burgos PI, Causey ZL, Tamhane A, Kelley JM, Brown EE, Hughes LB, Danila MI, van Everdingen A, Conn DL, Jonas BL, et al: Association of IL4R single-nucleotide polymorphisms with rheumatoid nodules in African Americans with rheumatoid arthritis. Arthritis Res Ther. 2010, 12 (3): R75-10.1186/ar2994.Tachdjian R, Mathias C, Al Khatib S, Bryce PJ, Kim HS, Blaeser F, O'Connor BD, Rzymkiewicz D, Chen A, Holtzman MJ, et al: Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J Exp Med. 2009, 206 (10): 2191-2204. 10.1084/jem.20091480.Zheng G, Wang Y, Xiang SH, Tay YC, Wu H, Watson D, Coombes J, Rangan GK, Alexander SI, Harris DC: DNA vaccination with CCL2 DNA modified by the addition of an adjuvant epitope protects against "nonimmune" toxic renal injury. J Am Soc Nephrol. 2006, 17 (2): 465-474. 10.1681/ASN.2005020164.Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, Kim SH, Han SY, Han KH, Lee JE, et al: CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 2010, 78 (9): 883-894. 10.1038/ki.2010.263.Dai R, Ahmed SA: MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011, 157 (4): 163-179. 10.1016/j.trsl.2011.01.007.Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM: PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002, 18 (2): 333-334. 10.1093/bioinformatics/18.2.333.Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, Messeguer X: Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003, 31 (13): 3651-3653. 10.1093/nar/gkg605.Wei L, Vahedi G, Sun HW, Watford WT, Takatori H, Ramos HL, Takahashi H, Liang J, Gutierrez-Cruz G, Zang C, et al: Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity. 2010, 32 (6): 840-851. 10.1016/j.immuni.2010.06.003.Nakayama T, Sato W, Kosugi T, Zhang L, Campbell-Thompson M, Yoshimura A, Croker BP, Johnson RJ, Nakagawa T: Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. Am J Physiol Renal Physiol. 2009, 296 (2): F317-327.Webber JL, Tooze SA: New insights into the function of Atg9. FEBS Lett. 2010, 584 (7): 1319-1326. 10.1016/j.febslet.2010.01.020.Kullo IJ, Greene MT, Boerwinkle E, Chu J, Turner ST, Kardia SL: Association of polymorphisms in NOS3 with the ankle-brachial index in hypertensive adults. Atherosclerosis. 2008, 196 (2): 905-912. 10.1016/j.atherosclerosis.2007.02.008.Popov AF, Hinz J, Schulz EG, Schmitto JD, Wiese CH, Quintel M, Seipelt R, Schoendube FA: The eNOS 786C/T polymorphism in cardiac surgical patients with cardiopulmonary bypass is associated with renal dysfunction. Eur J Cardiothorac Surg. 2009, 36 (4): 651-656. 10.1016/j.ejcts.2009.04.049.Wang CH, Li F, Hiller S, Kim HS, Maeda N, Smithies O, Takahashi N: A modest decrease in endothelial NOS in mice comparable to that associated with human NOS3 variants exacerbates diabetic nephropathy. Proc Natl Acad Sci U S A. 2011, 108 (5): 2070-2075. 10.1073/pnas.1018766108.Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37 (9): e67-10.1093/nar/gkp215.Sironi M, Menozzi G, Riva L, Cagliani R, Comi GP, Bresolin N, Giorda R, Pozzoli U: Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res. 2004, 32 (5): 1783-1791. 10.1093/nar/gkh341.Perneger TV: What's wrong with Bonferroni adjustments. BMJ. 1998, 316 (7139): 1236-1238. 10.1136/bmj.316.7139.1236.Sterne JA, Davey Smith G: Sifting the evidence-what's wrong with significance tests?. BMJ. 2001, 322 (7280): 226-231. 10.1136/bmj.322.7280.226
Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050
© 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories—government, out-of-pocket, and prepaid private health spending—and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings: Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89–4·12) annually, although it grew slower in per capita terms (2·72% [2·61–2·84]) and increased by less than 8·0 trillion (7·8–8·1) in 2016 (comprising 8·6% [8·4–8·7] of the global economy and 5252 (5184–5319) in high-income countries, 81 (74–89) in lower-middle-income countries, and 9·5 billion, 24·3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6·27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China's contribution to DAH (15·0 trillion (14·0–16·0) by 2050 (reaching 9·4% [7·6–11·3] of the global economy and $21·3 trillion [19·8–23·1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1·84% (1·68–2·02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0·6% (0·6–0·7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15·7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130·2 (122·9–136·9) in 2016 and is projected to remain at similar levels in 2050 (125·9 [113·7–138·1]). The decomposition analysis identified governments’ increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. Funding: Bill & Melinda Gates Foundation
Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Burden of Diseases Study 2019
Background: The sustainable development goals (SDGs) aim to end HIV/AIDS as a public health threat by 2030. Understanding the current state of the HIV epidemic and its change over time is essential to this effort. This study assesses the current sex-specific HIV burden in 204 countries and territories and measures progress in the control of the epidemic. Methods: To estimate age-specific and sex-specific trends in 48 of 204 countries, we extended the Estimation and Projection Package Age-Sex Model to also implement the spectrum paediatric model. We used this model in cases where age and sex specific HIV-seroprevalence surveys and antenatal care-clinic sentinel surveillance data were available. For the remaining 156 of 204 locations, we developed a cohort-incidence bias adjustment to derive incidence as a function of cause-of-death data from vital registration systems. The incidence was input to a custom Spectrum model. To assess progress, we measured the percentage change in incident cases and deaths between 2010 and 2019 (threshold >75% decline), the ratio of incident cases to number of people living with HIV (incidence-to-prevalence ratio threshold <0·03), and the ratio of incident cases to deaths (incidence-to-mortality ratio threshold <1·0). Findings: In 2019, there were 36·8 million (95% uncertainty interval [UI] 35·1–38·9) people living with HIV worldwide. There were 0·84 males (95% UI 0·78–0·91) per female living with HIV in 2019, 0·99 male infections (0·91–1·10) for every female infection, and 1·02 male deaths (0·95–1·10) per female death. Global progress in incident cases and deaths between 2010 and 2019 was driven by sub-Saharan Africa (with a 28·52% decrease in incident cases, 95% UI 19·58–35·43, and a 39·66% decrease in deaths, 36·49–42·36). Elsewhere, the incidence remained stable or increased, whereas deaths generally decreased. In 2019, the global incidence-to-prevalence ratio was 0·05 (95% UI 0·05–0·06) and the global incidence-to-mortality ratio was 1·94 (1·76–2·12). No regions met suggested thresholds for progress. Interpretation: Sub-Saharan Africa had both the highest HIV burden and the greatest progress between 1990 and 2019. The number of incident cases and deaths in males and females approached parity in 2019, although there remained more females with HIV than males with HIV. Globally, the HIV epidemic is far from the UNAIDS benchmarks on progress metrics. Funding: The Bill & Melinda Gates Foundation, the National Institute of Mental Health of the US National Institutes of Health (NIH), and the National Institute on Aging of the NIH
- …
