2,534 research outputs found

    Field-tuned quantum critical point of antiferromagnetic metals

    Full text link
    A magnetic field applied to a three-dimensional antiferromagnetic metal can destroy the long-range order and thereby induce a quantum critical point. Such field-induced quantum critical behavior is the focus of many recent experiments. We investigate theoretically the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. The external field does not only suppress (or induce in some systems) antiferromagnetism but also influences the dynamics of the order parameter by inducing spin precession. This leads to an exactly marginal correction to spin-fluctuation theory. We investigate how the interplay of precession and damping determines the specific heat, magnetization, magnetocaloric effect, susceptibility and scattering rates. We point out that the precession can change the sign of the leading \sqrt{T} correction to the specific heat coefficient c(T)/T and can induce a characteristic maximum in c(T)/T for certain parameters. We argue that the susceptibility \chi =\partial M/\partial B is the thermodynamic quantity which shows the most significant change upon approaching the quantum critical point and which gives experimental access to the (dangerously irrelevant) spin-spin interactions.Comment: 12 pages, 8 figure

    Measurement of coupling and interstrip capacitances in silicon microstrip sensors for the CBM experiment at FAIR

    Get PDF

    Silicon strip sensor layout for the CBM Silicon Tracking System

    Get PDF

    Charge sharing in micro-strip sensors: experiment and simulation

    Get PDF

    Performance of a first prototype module for the CBM Silicon Tracking System

    Get PDF

    Silicon strip sensor layout for CBM STS

    Get PDF

    Magnetic-Field Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    We report low-temperature calorimetric, magnetic and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh2_2Si2_2 (TN={T_N =} 70 mK) as a function of magnetic field BB. While for fields exceeding the critical value Bc0{B_{c0}} at which TN0{T_N\to0} the low temperature resistivity shows an AT2{AT^2} dependence, a 1/(BBc0){1/(B-B_{c0})} divergence of A(B){A(B)} upon reducing BB to Bc0{B_{c0}} suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let

    Radiation tolerance studies of silicon microstrip sensors for the CBM Silicon Tracking System

    Get PDF
    Double-sided silicon microstrip sensors will be used in the Silicon Tracking System of the CBM experiment. During experimental run they will be exposed to a radiation field of up to 1x1014 1 MeV neq cm-2. Radiation tolerance studies were made on prototypes from two different vendors. Results from these prototype detectors before and after irradiation to twice that neutron fluence are discussed
    corecore