125 research outputs found

    Influence of GaInP ordering on the electronic quality of concentrator solar cells

    Get PDF
    The ordering phenomenon produces a reduction in the band gap of the GaInP material. Though a drawback for many optoelectronic applications, ordering can be used as an additional degree of material and device engineering freedom. The performance of the record efficiency GaInP/GaAs/Ge multijunction solar cells depends on the quality and design of the GaInP top cell, which can be affected also by ordering. The tradeoff existing between band gap and minority carrier properties, and the possibility of creating a back surface field (BSF) structure based on an order–disorder GaInP heterostructure makes the study of the ordering appealing for solar cell applications. In this work, the ordering dependency with the growth conditions and substrate orientation is studied. The results obtained are presented to enrich and extend the data available in the literature. Then the properties of order–disorder GaInP heterostructures are assessed by using them as BSF in GaInP concentrator solar cells. The external quantum efficiency (EQE) shows a good behavior of these BSF layers, but unexpectedly poor electronic quality in the active layers. Although the exact origin of this problem remains to be known, it is attributed to traps introduced by the ordered/disordered domains matrix or growth native defects. EQE measurements with bias light show a recovery of the minority carrier properties, presumably due to the saturation of the traps

    Deterministic polarization chaos from a laser diode

    Full text link
    Fifty years after the invention of the laser diode and fourty years after the report of the butterfly effect - i.e. the unpredictability of deterministic chaos, it is said that a laser diode behaves like a damped nonlinear oscillator. Hence no chaos can be generated unless with additional forcing or parameter modulation. Here we report the first counter-example of a free-running laser diode generating chaos. The underlying physics is a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time-series and show theoretically the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles at first sight a noise-driven mode hopping but shows opposite statistical properties. Our findings open up new research areas that combine the high speed performances of microcavity lasers with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure

    Fully Gapped Single-Particle Excitations in the Lightly Doped Cuprates

    Full text link
    The low-energy excitations of the lightly doped cuprates were studied by angle-resolved photoemission spectroscopy. A finite gap was measured over the entire Brillouin zone, including along the d_{x^2 - y^2} nodal line. This effect was observed to be generic to the normal states of numerous cuprates, including hole-doped La_{2-x}Sr_{x}CuO_{4} and Ca_{2-x}Na_{x}CuO_{2}Cl_{2} and electron-doped Nd_{2-x}Ce_{x}CuO_{4}. In all compounds, the gap appears to close with increasing carrier doping. We consider various scenarios to explain our results, including the possible effects of chemical disorder, electronic inhomogeneity, and a competing phase.Comment: To appear in Phys. Rev.

    Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere

    Get PDF
    Latitudinal gradients in species interactions are widely cited as potential causes or consequences of global patterns of biodiversity. However, mechanistic studies documenting changes in interactions across broad geographic ranges are limited. We surveyed predation intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and four continental coastlines. Predation on amphipods declined with latitude on all coasts but declined more strongly along western ocean margins where temperature gradients are steeper. Whereas in situ water temperature at the time of the experiments was uncorrelated with predation, mean annual temperature strongly positively predicted predation, suggesting a more complex mechanism than simple increased metabolic activity at the time of predation. This large-scale biogeographic pattern was modified by local habitat characteristics; predation declined with higher shoot density both among and within sites. Predation rates on gastropods, by contrast, were uniformly low and varied little among sites. The high replication and geographic extent of our study not only provides additional evidence to support biogeographic variation in intensity, but also insight into the mechanisms that relate temperature and biogeographic gradients in species interactions

    Seascape ecology: identifying research priorities for an emerging ocean sustainability science

    Get PDF
    Seascape ecology, the marine-centric counterpart to landscape ecology, is rapidly emerging as an interdisciplinary and spatially explicit ecological science with relevance to marine management, biodiversity conservation, and restoration. While important progress in this field has been made in the past decade, there has been no coherent prioritisation of key research questions to help set the future research agenda for seascape ecology. We used a 2-stage modified Delphi method to solicit applied research questions from academic experts in seascape ecology and then asked respondents to identify priority questions across 9 interrelated research themes using 2 rounds of selection. We also invited senior management/conservation practitioners to prioritise the same research questions. Analyses highlighted congruence and discrepancies in perceived priorities for applied research. Themes related to both ecological concepts and management practice, and those identified as priorities include seascape change, seascape connectivity, spatial and temporal scale, ecosystem-based management, and emerging technologies and metrics. Highest-priority questions (upper tercile) received 50% agreement between respondent groups, and lowest priorities (lower tercile) received 58% agreement. Across all 3 priority tiers, 36 of the 55 questions were within a ±10% band of agreement. We present the most important applied research questions as determined by the proportion of votes received. For each theme, we provide a synthesis of the research challenges and the potential role of seascape ecology. These priority questions and themes serve as a roadmap for advancing applied seascape ecology during, and beyond, the UN Decade of Ocean Science for Sustainable Development (2021-2030)

    A Pleistocene legacy structures variation in modern seagrass ecosystems

    Get PDF
    Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems.This work was supported by the US NSF (OCE-1031061, OCE-1336206, OCE0-1336741, OCE-1336905) and the Smithsonian Institution. F.T. was supported by José Castillejo Award CAS14/00177. A.H.E. was supported by the FCT (Foundation for Science and Technology) through Project UIDB/04326/2020 and Contract CEECINST/00114/2018. This is Contribution 106 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network and Contribution 4105 of the Virginia Institute of Marine Science, College of William & Mary

    A latitudinal cline in the taxonomic structure of eelgrass epifaunal communities is associated with plant genetic diversity

    Get PDF
    Aim: Biogenic structural complexity increases mobile animal richness and abundance at local, regional and global scales, yet animal taxa vary in their response to complexity. When these taxa also vary functionally, habitat structures favouring certain taxa may have consequences for ecosystem function. We characterised global patterns of epifaunal invertebrates in eelgrass (Zostera marina) beds that varied in structural and genetic composition. Location: North America, Europe and Asia. Time Period: 2014. Major Taxa Studied: Peracarid crustaceans and gastropod molluscs. Methods: We sampled epifaunal invertebrate communities in 49 eelgrass beds across 37° latitude in two ocean basins concurrently with measurements of eelgrass genetic diversity, structural complexity and other abiotic and biotic environmental variables. We examined how species richness, abundance and community composition varied with latitude and environmental predictors using a random forest approach. We also examined how functional trait composition varied along with community structure. Results: Total species richness decreased with latitude, but this was accompanied by a taxonomic shift in dominance from peracarid crustaceans to gastropods, which exhibited different sets of functional traits. Greater eelgrass genetic diversity was strongly correlated with both richness and abundance of peracarids, but less so for gastropods. Main Conclusions: Our results add to a growing body of literature that suggests genetic variation in plant traits influences their associated faunal assemblages via habitat structure. Because peracarids and gastropods exhibited distinct functional traits, our results suggest a tentative indirect link between broad-scale variation in plant genetic diversity and ecosystem function.</p

    A Pleistocene legacy structures variation in modern seagrass ecosystems

    Get PDF
    Distribution of Earth's biomes is structured by the match between climate and plant traits, which in turn shape associated communities and ecosystem processes and services. However, that climate-trait match can be disrupted by historical events, with lasting ecosystem impacts. As Earth's environment changes faster than at any time in human history, critical questions are whether and how organismal traits and ecosystems can adjust to altered conditions. We quantified the relative importance of current environmental forcing versus evolutionary history in shaping the growth form (stature and biomass) and associated community of eelgrass (Zostera marina), a widespread foundation plant of marine ecosystems along Northern Hemisphere coastlines, which experienced major shifts in distribution and genetic composition during the Pleistocene. We found that eelgrass stature and biomass retain a legacy of the Pleistocene colonization of the Atlantic from the ancestral Pacific range and of more recent within-basin bottlenecks and genetic differentiation. This evolutionary legacy in turn influences the biomass of associated algae and invertebrates that fuel coastal food webs, with effects comparable to or stronger than effects of current environmental forcing. Such historical lags in phenotypic acclimatization may constrain ecosystem adjustments to rapid anthropogenic climate change, thus altering predictions about the future functioning of ecosystems

    Climate drives the geography of marine consumption by changing predator communities

    Get PDF
    Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems.We acknowledge funding from the Smithsonian Institution and the Tula Foundation.Peer reviewe
    corecore