13,902 research outputs found
Microscopic electronic configurations after ultrafast magnetization dynamics
We provide a model for the prediction of the electronic and magnetic
configurations of ferromagnetic Fe after an ultrafast decrease or increase of
magnetization. The model is based on the well-grounded assumption that, after
the ultrafast magnetization change, the system achieves a partial thermal
equilibrium. With statistical arguments it is possible to show that the
magnetic configurations are qualitatively different in the case of reduced or
increased magnetization. The predicted magnetic configurations are then used to
compute the dielectric response at the 3p (M) absorption edge, which can be
related to the changes observed in the experimental T-MOKE data. The good
qualitative agreement between theory and experiment offers a substantial
support to the existence of an ultrafast increase of magnetisation, which has
been fiercely debated in the last years.Comment: Main text 10 pages including 7 figures. Supplemental material 5 pages
including 1 figur
Microscopic origin of Heisenberg and non-Heisenberg exchange interactions in ferromagnetic bcc Fe
By means of first principles calculations we investigate the nature of
exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the
basic electronic structure reveals a drastic difference between the
orbitals of and symmetries. The latter ones define the shape of
the Fermi surface, while the former ones form weakly-interacting impurity
levels. We demonstrate that, as a result of this, in Fe the orbitals
participate in exchange interactions, which are only weakly dependent on the
configuration of the spin moments and thus can be classified as
Heisenberg-like. These couplings are shown to be driven by Fermi surface
nesting. In contrast, for the states the Heisenberg picture breaks down,
since the corresponding contribution to the exchange interactions is shown to
strongly depend on the reference state they are extracted from. Our analysis of
the nearest-neighbour coupling indicates that the interactions among
states are mainly proportional to the corresponding hopping integral and thus
can be attributed to be of double-exchange origin.Comment: 5 pages, 4 figure
Analytic continuation by averaging Pad\'e approximants
The ill-posed analytic continuation problem for Green's functions and
self-energies is investigated by revisiting the Pad\'{e} approximants
technique. We propose to remedy the well-known problems of the Pad\'{e}
approximants by performing an average of several continuations, obtained by
varying the number of fitted input points and Pad\'{e} coefficients
independently. The suggested approach is then applied to several test cases,
including Sm and Pr atomic self-energies, the Green's functions of the Hubbard
model for a Bethe lattice and of the Haldane model for a nano-ribbon, as well
as two special test functions. The sensitivity to numerical noise and the
dependence on the precision of the numerical libraries are analysed in detail.
The present approach is compared to a number of other techniques, i.e. the
non-negative least-square method, the non-negative Tikhonov method and the
maximum entropy method, and is shown to perform well for the chosen test cases.
This conclusion holds even when the noise on the input data is increased to
reach values typical for quantum Monte Carlo simulations. The ability of the
algorithm to resolve fine structures is finally illustrated for two relevant
test functions.Comment: 10 figure
Lattice dynamics of palladium in the presence of electronic correlations
We compute the phonon dispersion, density of states, and the Gr\"uneisen
parameters of bulk palladium in the combined density functional theory (DFT)
and dynamical mean-field theory (DMFT). We find good agreement with
experimental results for ground state properties (equilibrium lattice parameter
and bulk modulus) and the experimentally measured phonon spectra. We
demonstrate that at temperatures the phonon frequency in the
vicinity of the Kohn anomaly, , strongly decreases.
This is in contrast to DFT where this frequency remains essentially constant in
the whole temperature range. Apparently correlation effects reduce the
restoring force of the ionic displacements at low temperatures, leading to a
mode softening.Comment: minor revision
Electronic and Magnetic Properties of single Fe atoms on a CuN Surface; Effects of Electron Correlations
The electronic structure and magnetic properties of a single Fe adatom on a
CuN surface have been studied using density functional theory in the local spin
density approximation (LSDA), the LSDA+U approach and the local density
approximation plus dynamical mean-field theory (LDA+DMFT). The impurity problem
in LDA+DMFT is solved through exact diagonalization and in the Hubbard-I
approximation. The comparison of the one-particle spectral functions obtained
from LSDA, LSDA+U and LDA+DMFT show the importance of dynamical correlations
for the electronic structure of this system. Most importantly, we focused on
the magnetic anisotropy and found that neither LSDA, nor LSDA+U can explain the
measured, high values of the axial and transverse anisotropy parameters.
Instead, the spin excitation energies obtained from our LDA+DMFT approach with
exact diagonalization agree significantly better with experimental data. This
affirms the importance of treating fluctuating magnetic moments through a
realistic many-body treatment when describing this class of nano-magnetic
systems. Moreover, it facilitates insight to the role of the hybridization with
surrounding orbitals.Comment: 17 pages, 4 figure
The electronic structure of palladium in the presence of many-body effects
Including on-site electronic interactions described by the multi-orbital
Hubbard model we study the correlation effects in the electronic structure of
bulk palladium. We use a combined density functional and dynamical mean field
theory, LDA+DMFT, based on the fluctuation exchange approximation. The
agreement between the experimentally determined and the theoretical lattice
constant and bulk modulus is improved when correlation effects are included. It
is found that correlations modify the Fermi surface around the neck at the
-point while the Fermi surface tube structures show little correlation
effects. At the same time we discuss the possibility of satellite formation in
the high energy binding region. Spectral functions obtained within the LDA+DMFT
and methods are compared to discuss non-local correlation effects. For
relatively weak interaction strength of the local Coulomb and exchange
parameters spectra from LDA+DMFT shows no major difference in comparison to
Electron correlations in MnGaAs as seen by resonant electron spectroscopy and dynamical mean field theory
After two decades from the discovery of ferromagnetism in Mn-doped GaAs, its
origin is still debated, and many doubts are related to the electronic
structure. Here we report an experimental and theoretical study of the valence
electron spectrum of Mn-doped GaAs. The experimental data are obtained through
the differences between off- and on-resonance photo-emission data. The
theoretical spectrum is calculated by means of a combination of
density-functional theory in the local density approximation and dynamical
mean-field theory (LDA+DMFT), using exact diagonalisation as impurity solver.
Theory is found to accurately reproduce measured data, and illustrates the
importance of correlation effects. Our results demonstrate that the Mn states
extend over a broad range of energy, including the top of the valence band, and
that no impurity band splits off from the valence band edge, while the induced
holes seem located primarily around the Mn impurity.Comment: 5 pages, 4 figure
Operation of EMEP ‘supersites’ in the United Kingdom. Annual report for 2008.
As part of its commitment to the UN-ECE Convention on Long-range Transboundary Air Pollution the United Kingdom operates two ‘supersites’ reporting data to the Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP).
This report provides the annual summary for 2008, the second full calendar year of operation of the first EMEP ‘supersite’ to be established in the United Kingdom. Detailed operational reports have been submitted to Defra every 3 months, with unratified data. This annual report contains a summary of the ratified data for 2008.
The EMEP ‘supersite’ is located in central southern Scotland at Auchencorth (3.2oW, 55.8oN), a remote rural moorland site ~20 km south-west of Edinburgh. Monitoring operations started formally on 1 June 2006.
In addition to measurements made specifically under this contract, the Centre for Ecology & Hydrology also acts as local site operator for measurements made under other UK monitoring networks: the Automated Urban and Rural Network (AURN), the UK Eutrophication and Acidification Network (UKEAP), the UK Hydrocarbons Network, and the UK Heavy Metals Rural Network. Some measurements were also made under the auspices of the ‘Air Pollution Deposition Processes’ contract. All these associated networks are funded by Defra.
This report summarises the measurements made between January and December 2008, and presents summary statistics on average concentrations.
The site is dominated by winds from the south-west, but wind direction data highlight potential sources of airborne pollutants (power stations, conurbations).
The average diurnal patterns of gases and particles are consistent with those expected for a remote rural site.
The frequency distributions are presented for data where there was good data capture throughout the whole period. Some components (e.g. black carbon) show log-normal frequency distributions, while other components (e.g. ozone) have more nearly normal frequency distributions.
A case study is presented for a period in June 2008, showing the influence of regional air pollutants at this remote rural site.
All the data reported under the contract are shown graphically in the Appendix
- …
