8,909 research outputs found
Nonequilibrium charge dynamics of light-driven rings threaded by a magnetic flux
We study theoretically the charge polarization and the charge current
dynamics of a mesoscopic ring driven by short asymmetric electromagnetic pulses
and threaded by an external static magnetic flux. It is shown that the
pulse-induced charge polarization and the associated light-emission is
controllable by tuning the external magnetic flux. Applying two mutually
perpendicular pulses triggers a charge current in the ring. The interplay
between this nonequilibrium and the persistent currents is investigated and the
conditions under which the pulses stop the persistent current are identified.Comment: 6 pages, 2 figures; submitted to EP
Oscillatons revisited
In this paper, we study some interesting properties of a spherically
symmetric oscillating soliton star made of a real time-dependent scalar field
which is called an oscillaton. The known final configuration of an oscillaton
consists of a stationary stage in which the scalar field and the metric
coefficients oscillate in time if the scalar potential is quadratic. The
differential equations that arise in the simplest approximation, that of
coherent scalar oscillations, are presented for a quadratic scalar potential.
This allows us to take a closer look at the interesting properties of these
oscillating objects. The leading terms of the solutions considering a quartic
and a cosh scalar potentials are worked in the so called stationary limit
procedure. This procedure reveals the form in which oscillatons and boson stars
may be related and useful information about oscillatons is obtained from the
known results of boson stars. Oscillatons could compete with boson stars as
interesting astrophysical objects, since they would be predicted by scalar
field dark matter models.Comment: 10 pages REVTeX, 10 eps figures. Updated files to match version
published in Classical and Quantum Gravit
Quintessence and Scalar Dark Matter in the Universe
Continuing with previous works, we present a cosmological model in which dark
matter and dark energy are modeled by scalar fields and ,
respectively, endowed with the scalar potentials and . This model contains 95% of
scalar field. We obtain that the scalar dark matter mass is The solution obtained allows us to recover the success of the
standard CDM. The implications on the formation of structure are reviewed. We
obtain that the minimal cutoff radio for this model is Comment: 4 pages REVTeX, 3 eps color figures. Minor changes and references
updated. To appear in Classical and Quantum Gravity as a Letter to the
Editor. More information at http://www.fis.cinvestav.mx/~siddh/PHI
Trends in the extinction of carnivores in Madagascar
Tendencias de la extinción de carnívoros en Madagascar La extinción de los depredadores apicales, como los mamíferos carnívoros, puede conllevar cambios drásticos en la estructura de la red alimentaria y la dinámica de los ecosistemas. Dado que todos los mamíferos carnívoros terrestres autóctonos de Madagascar son endémicos, su extinción implica una pérdida notable de biodiversidad en este país. En el presente artículo examinamos las publicaciones sobre mamíferos carnívoros de Madagascar con el propósito de determinar cuáles son las especies que tienen mayor probabilidad de extinguirse en un futuro próximo, en vista de los factores que amenazan su supervivencia. Puntuamos cada factor en función de los efectos que ejerce en las especies. Según nuestros resultados, la especie que tiene más probabilidad de extinguirse es la mangosta rayada grande, Galidictis grandidieri, lo cual no es sorprendente porque esta especie se considera uno de los carnívoros más escasos del mundo, que habita solo en un ecosistema forestal pequeño y amenazado. Asimismo, nuestros resultados ponen de manifiesto la necesidad de disponer de datos sólidos sobre cada especie, a fin de ayudar y respaldar a las autoridades a poner en práctica medidas de conservación.The extinction of top predators, such as mammalian carnivores can lead to dramatic changes in foodweb structure and ecosystem dynamics. Since all native Malagasy terrestrial mammalian carnivores are endemic, their extinction implies a significant loss of biodiversity in Madagascar. Here we review the literature on Madagascar’s mammalian carnivores, aiming to determine which species are most likely to become extinct in the near future in view of the factors threatening their survival. We scored each factor according to its impact on the species. According to our results, the giant–striped mongoose, Galidictis grandidieri, is the most likely species to next become extinct. This is no surprise because this species is considered one of the rarest carnivores in the world, inhabiting only a small, threatened forest ecosystem. Our results emphasize the need for robust data about each species to help and support decision–makers implement conservation measures.Tendencias de la extinción de carnívoros en Madagascar La extinción de los depredadores apicales, como los mamíferos carnívoros, puede conllevar cambios drásticos en la estructura de la red alimentaria y la dinámica de los ecosistemas. Dado que todos los mamíferos carnívoros terrestres autóctonos de Madagascar son endémicos, su extinción implica una pérdida notable de biodiversidad en este país. En el presente artículo examinamos las publicaciones sobre mamíferos carnívoros de Madagascar con el propósito de determinar cuáles son las especies que tienen mayor probabilidad de extinguirse en un futuro próximo, en vista de los factores que amenazan su supervivencia. Puntuamos cada factor en función de los efectos que ejerce en las especies. Según nuestros resultados, la especie que tiene más probabilidad de extinguirse es la mangosta rayada grande, Galidictis grandidieri, lo cual no es sorprendente porque esta especie se considera uno de los carnívoros más escasos del mundo, que habita solo en un ecosistema forestal pequeño y amenazado. Asimismo, nuestros resultados ponen de manifiesto la necesidad de disponer de datos sólidos sobre cada especie, a fin de ayudar y respaldar a las autoridades a poner en práctica medidas de conservación
Psychotic aura symptoms in familial hemiplegic migraine type 2 (ATP1A2)
Abstract
INTRODUCTION: Neuropsychological symptoms are rare in familial hemiplegic migraine (FHM). There are no reports of psychotic symptoms in FHM type 2 (ATP1A2). We examined a family with a FHM phenotype due to a M731T mutation in ATP1A2. A 10-year follow-up allowed us to observe complex auras, including psychotic symptoms in two siblings.
CASE REPORT: Male, 48 years old, with an aura that included complex illusions with a feeling of time travelling, coincident with other aura features. The aura was regarded as mystical by the patient. Female, 38 years old, with a complex migraine aura, during which she believed she had the ability to time travel and was being followed by lobbyists who wanted to steal this ability from her.
DISCUSSION: FHM type 2 must be included in the list of differential diagnoses of acute psychosis in patients with a previous history of migraine aura
Anti-MuSK-positive myasthenia gravis diagnosed during pregnancy: New challenges for an old disease
Myasthenia gravis is an autoimmune disorder affecting predominantly women in their reproductive age. The course of the disease during pregnancy is unpredictable, although it is more difficult to manage earlier in the gestation. Myasthenia gravis with antibodies against the muscle-specific receptor tyrosine kinase (anti-MuSK) has been described as a subtype of disease with more localised clinical features and a poorer response to treatment than acetylcholine receptor antibody (anti-AChR)-positive patients. Few cases have been reported in pregnant women, with deliveries being performed mainly by caesarean section. We report a successful case of vaginal delivery and describe our experience providing the first review of the management of this subtype of disease during pregnancy
Bose-Einstein condensate dark matter phase transition from finite temperature symmetry breaking of Klein-Gordon fields
In this paper the thermal evolution of scalar field dark matter particles at
finite cosmological temperatures is studied. Starting with a real scalar field
in a thermal bath and using the one loop quantum corrections potential, we
rewrite Klein-Gordon's (KG) equation in its hydrodynamical representation and
study the phase transition of this scalar field due to a Z_2 symmetry breaking
of its potential. A very general version of a nonlinear Schr\"odinger equation
is obtained. When introducing Madelung's representation, the continuity and
momentum equations for a non-ideal SFDM fluid are formulated, and the
cosmological scenario with the SFDM described in analogy to an imperfect fluid
is then considered where dissipative contributions are obtained in a natural
way.Additional terms appear compared to those obtained in the classical version
commonly used to describe the \LambdaCDM model, i.e., the ideal fluid. The
equations and parameters that characterize the physical properties of the
system such as its energy, momentum and viscous flow are related to the
temperature of the system, scale factor, Hubble's expansion parameter and the
matter energy density. Finally, some details on how galaxy halos and smaller
structures might be able to form by condensation of this SF are given.Comment: Substantial changes have been made to the paper, following the
referees recommendations. 16 pages. Published in Classical and Quantum
Gravit
Renormalization of Quantum Anosov Maps: Reduction to Fixed Boundary Conditions
A renormalization scheme is introduced to study quantum Anosov maps (QAMs) on
a torus for general boundary conditions (BCs), whose number () is always
finite. It is shown that the quasienergy eigenvalue problem of a QAM for {\em
all} BCs is exactly equivalent to that of the renormalized QAM (with
Planck's constant ) at some {\em fixed} BCs that can
be of four types. The quantum cat maps are, up to time reversal, fixed points
of the renormalization transformation. Several results at fixed BCs, in
particular the existence of a complete basis of ``crystalline'' eigenstates in
a classical limit, can then be derived and understood in a simple and
transparent way in the general-BCs framework.Comment: REVTEX, 12 pages, 1 table. To appear in Physical Review Letter
- …
