578 research outputs found

    On the Role of Disks in the Formation of Stellar Systems: A Numerical Parameter Study of Rapid Accretion

    Full text link
    We study rapidly accreting, gravitationally unstable disks with a series of global, three dimensional, numerical experiments using the code ORION. In this paper we conduct a numerical parameter study focused on protostellar disks, and show that one can predict disk behavior and the multiplicity of the accreting star system as a function of two dimensionless parameters which compare the disk's accretion rate to its sound speed and orbital period. Although gravitational instabilities become strong, we find that fragmentation into binary or multiple systems occurs only when material falls in several times more rapidly than the canonical isothermal limit. The disk-to-star accretion rate is proportional to the infall rate, and governed by gravitational torques generated by low-m spiral modes. We also confirm the existence of a maximum stable disk mass: disks that exceed ~50% of the total system mass are subject to fragmentation and the subsequent formation of binary companions.Comment: 16 pages, 12 figures, submitte

    Measuring emission coordinates in a pulsar-based relativistic positioning system

    Full text link
    A relativistic deep space positioning system has been proposed using four or more pulsars with stable repetition rates. (Each pulsar emits pulses at a fixed repetition period in its rest frame.) The positioning system uses the fact that an event in spacetime can be fully described by emission coordinates: the proper emission time of each pulse measured at the event. The proper emission time of each pulse from four different pulsars---interpolated as necessary---provides the four spacetime coordinates of the reception event in the emission coordinate system. If more than four pulsars are available, the redundancy can improve the accuracy of the determination and/or resolve degeneracies resulting from special geometrical arrangements of the sources and the event. We introduce a robust numerical approach to measure the emission coordinates of an event in any arbitrary spacetime geometry. Our approach uses a continuous solution of the eikonal equation describing the backward null cone from the event. The pulsar proper time at the instant the null cone intersects the pulsar world line is one of the four required coordinates. The process is complete (modulo degeneracies) when four pulsar world lines have been crossed by the light cone. The numerical method is applied in two different examples: measuring emission coordinates of an event in Minkowski spacetime using pulses from four pulsars stationary in the spacetime; and measuring emission coordinates of an event in Schwarzschild spacetime using pulses from four pulsars freely falling toward a static black hole. These numerical simulations are merely exploratory, but with improved resolution and computational resources the method can be applied to more pertinent problems. For instance one could measure the emission coordinates, and therefore the trajectory, of the Earth.Comment: 9 pages, 2 figures, v3: replaced with version accepted by Phys. Rev.

    The Formation of Low-Mass Binary Star Systems Via Turbulent Fragmentation

    Full text link
    We characterize the infall rate onto protostellar systems forming in self-gravitating radiation-hydrodynamic simulations. Using two dimensionless parameters to determine disks' susceptability to gravitational fragmentation, we infer limits on protostellar system multiplicity and the mechanism of binary formation. We show that these parameters give robust predictions even in the case of marginally resolved protostellar disks. We find that protostellar systems with radiation feedback predominately form binaries via turbulent fragmentation, not disk instability, and we predict turbulent fragmentation is the dominant channel for binary formation for low-mass stars. We clearly demonstrate that systems forming in simulations including radiative feedback have fundamentally different parameters than those in purely hydrodynamic simulations.Comment: 11 pages, 10 figures, accepted to Ap

    The Cdc31p-binding protein Kar1p is a component of the half bridge of the yeast spindle pole body

    Get PDF
    KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p-binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells

    Global Models for the Evolution of Embedded, Accreting Protostellar Disks

    Full text link
    Most analytic work to date on protostellar disks has focused on those in isolation from their environments. However, observations are now beginning to probe the earliest, most embedded phases of star formation, during which disks are rapidly accreting from their parent cores and cannot be modeled in isolation. We present a simple, one-zone model of protostellar accretion disks with high mass infall rates. Our model combines a self-consistent calculation of disk temperatures with an approximate treatment of angular momentum transport via two mechanisms. We use this model to survey the properties of protostellar disks across a wide range of stellar masses and evolutionary times, and make predictions for disks' masses, sizes, spiral structure, and fragmentation that will be directly testable by future large-scale surveys of deeply embedded disks. We define a dimensionless accretion-rotation parameter which, in conjunction with the disk's temperature, controls the disk evolution. We track the dominant mode of angular momentum transport, and demonstrate that for stars with final masses greater than roughly one solar mass, gravitational instabilities are the most important mechanism as most of the mass accumulates. We predict that binary formation through disk fission, fragmentation of the disk into small objects, and spiral arm strength all increase in importance to higher stellar masses.Comment: 17 pages, 9 figures, accepted for publication in ApJ. Model updated to better reflect simulations in the literature; discussion of key assumptions and strategy clarifie

    Massive stars in massive clusters - IV. Disruption of clouds by momentum-driven winds

    Get PDF
    We examine the effect of momentum-driven OB-star stellar winds on a parameter space of simulated turbulent giant molecular clouds using smoothed particle hydrodynamic simulations. By comparison with identical simulations in which ionizing radiation was included instead of winds, we show that momentum-driven winds are considerably less effective in disrupting their host clouds than are H ii regions. The wind bubbles produced are smaller and generally smoother than the corresponding ionization-driven bubbles. Winds are roughly as effective in destroying the very dense gas in which the O stars are embedded, and thus shutting down the main regions of star-forming activity in the model clouds. However, their influence falls off rapidly with distance from the sources, so they are not as good at sweeping up dense gas and triggering star formation further out in the clouds. As a result, their effect on the star formation rate and efficiency is generally more negative than that of ionization, if they exert any effect at all.Peer reviewe

    Stable Topologies of Event Horizon

    Get PDF
    In our previous work, it was shown that the topology of an event horizon (EH) is determined by the past endpoints of the EH. A torus EH (the collision of two EH) is caused by the two-dimensional (one-dimensional) set of the endpoints. In the present article, we examine the stability of the topology of the EH. We see that a simple case of a single spherical EH is unstable. Furthermore, in general, an EH with handles (a torus, a double torus, ...) is structurally stable in the sense of catastrophe theory.Comment: 21 pages, revtex, five figures containe

    Secular evolution of viscous and self-gravitating circumstellar discs

    Full text link
    We add the effect of turbulent viscosity via the \alpha-prescription to models of the self-consistent formation and evolution of protostellar discs. Our models are non-axisymmetric and carried out using the thin-disc approximation. Self-gravity plays an important role in the early evolution of a disc, and the later evolution is determined by the relative importance of gravitational and viscous torques. In the absence of viscous torques, a protostellar disc evolves into a self-regulated state with disk-averaged Toomre parameter Q \sim 1.5-2.0, non-axisymmetric structure diminishing with time, and maximum disc-to-star mass ratio \xi = 0.14. We estimate an effective viscosity parameter \alpha_eff associated with gravitational torques at the inner boundary of our simulation to be in the range 10^{-4}-10^{-3} during the late evolution. Addition of viscous torques with a low value \alpha = 10^{-4} has little effect on the evolution, structure, and accretion properties of the disc, and the self-regulated state is largely preserved. A sequence of increasing values of \alpha results in the discs becoming more axisymmetric in structure, being more gravitationally stable, having greater accretion rates, larger sizes, shorter lifetimes, and lower disc-to-star mass ratios. For \alpha=10^{-2}, the model is viscous-dominated and the self-regulated state largely disappears by late times. (Abridged)Comment: 13 pages, 11 figures, accepted for publication in MNRA

    Spin Dynamics of the LAGEOS Satellite in Support of a Measurement of the Earth's Gravitomagnetism

    Get PDF
    LAGEOS is an accurately-tracked, dense spherical satellite covered with 426 retroreflectors. The tracking accuracy is such as to yield a medium term (years to decades) inertial reference frame determined via relatively inexpensive observations. This frame is used as an adjunct to the more difficult and data intensive VLBI absolute frame measurements. There is a substantial secular precession of the satellite's line of nodes consistent with the classical, Newtonian precession due to the non-sphericity of the earth. Ciufolini has suggested the launch of an identical satellite (LAGEOS-3) into an orbit supplementary to that of LAGEOS-1: LAGEOS-3 would then experience an equal and opposite classical precession to that of LAGEOS-1. Besides providing a more accurate real-time measurement of the earth's length of day and polar wobble, this paired-satellite experiment would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite, and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. Consequently, we undertake here a theoretical effort to model the spin ndynamics of LAGEOS. In this paper we present our preliminary results.Comment: 16 pages, RevTeX, LA-UR-94-1289. (Part I of II, postscript figures in Part II
    corecore