733 research outputs found
Atherosusceptible Shear Stress Activates Endoplasmic Reticulum Stress to Promote Endothelial Inflammation.
Atherosclerosis impacts arteries where disturbed blood flow renders the endothelium susceptible to inflammation. Cytokine activation of endothelial cells (EC) upregulates VCAM-1 receptors that target monocyte recruitment to atherosusceptible regions. Endoplasmic reticulum (ER) stress elicits EC dysregulation in metabolic syndrome. We hypothesized that ER plays a central role in mechanosensing of atherosusceptible shear stress (SS) by signaling enhanced inflammation. Aortic EC were stimulated with low-dose TNFα (0.3 ng/ml) in a microfluidic channel that produced a linear SS gradient over a 20mm field ranging from 0-16 dynes/cm2. High-resolution imaging of immunofluorescence along the monolayer provided a continuous spatial metric of EC orientation, markers of ER stress, VCAM-1 and ICAM-1 expression, and monocyte recruitment. VCAM-1 peaked at 2 dynes/cm2 and decreased to below static TNFα-stimulated levels at atheroprotective-SS of 12 dynes/cm2, whereas ICAM-1 rose to a maximum in parallel with SS. ER expansion and activation of the unfolded protein response also peaked at 2 dynes/cm2, where IRF-1-regulated VCAM-1 expression and monocyte recruitment also rose to a maximum. Silencing of PECAM-1 or key ER stress genes abrogated SS regulation of VCAM-1 transcription and monocyte recruitment. We report a novel role for ER stress in mechanoregulation at arterial regions of atherosusceptible-SS inflamed by low-dose TNFα
Recommended from our members
Oxylipins in triglyceride-rich lipoproteins of dyslipidemic subjects promote endothelial inflammation following a high fat meal.
Elevated triglyceride-rich lipoproteins (TGRL) in circulation is a risk factor for atherosclerosis. TGRL from subjects consuming a high saturated fat test meal elicited a variable inflammatory response in TNFα-stimulated endothelial cells (EC) that correlated strongly with the polyunsaturated fatty acid (PUFA) content. This study investigates how the relative abundance of oxygenated metabolites of PUFA, oxylipins, is altered in TGRL postprandially, and how these changes promote endothelial inflammation. Human aortic EC were stimulated with TNFα and treated with TGRL, isolated from subjects' plasma at fasting and 3.5 hrs postprandial to a test meal high in saturated fat. Endothelial VCAM-1 surface expression stimulated by TNFα provided a readout for atherogenic inflammation. Concentrations of esterified and non-esterified fatty acids and oxylipins in TGRL were quantified by mass spectrometry. Dyslipidemic subjects produced TGRL that increased endothelial VCAM-1 expression by ≥35%, and exhibited impaired fasting lipogenesis activity and a shift in soluble epoxide hydrolase and lipoxygenase activity. Pro-atherogenic TGRL were enriched in eicosapentaenoic acid metabolites and depleted in esterified C18-PUFA-derived diols. Abundance of these metabolites was strongly predictive of VCAM-1 expression. We conclude the altered metabolism in dyslipidemic subjects produces TGRL with a unique oxylipin signature that promotes a pro-atherogenic endothelial phenotype
Development of Future EU District Heating and Cooling Network Solutions, Sharing Experiences and Fostering Collaborations
Heating and cooling consume half of the EU’s energy and much of it is wasted. The lion’s share of heating and cooling is still generated from fossil fuels, mainly natural gas, while only 18% is generated from renewable energy. In order to fulfil the EU’s climate and energy goals, the heating and cooling sector must therefore sharply reduce its energy consumption and cut its use of fossil fuels. To this end the European Commission adopted a heating and cooling strategy in February 2016 as part of the wider Energy Union Package. A number of activities and projects funded by the programmes of European Union are supporting this new EU heating and cooling strategy
Management of imatinib-resistant CML patients
Imatinib has had marked impact on outcomes in chronic myelogenous leukemia (CML) patients for all stages of the disease and is endorsed by international treatment guidelines as the first line option. Although imatinib is highly effective and well tolerated, the development of resistance represents a clinical challenge. Since the most frequently identified mechanism of acquired imatinib resistance is bcr-abl kinase domain point mutations, periodic hematologic, cytogenetic, and molecular monitoring is critical throughout imatinib therapy. Once cytogenetic remission is achieved, residual disease can be monitored by bcr-abl transcript levels as assayed by reverse transcription polymerase chain reaction (RT-PCR). Detection of bcr-abl mutants prior to and during imatinib therapy can aid in risk stratification as well as in determining therapeutic strategies. Thus, mutation screening is indicated in patients lacking or losing hematologic response. Moreover, search for mutations should also be performed when a 3-log reduction of bcr-abl transcripts is not achieved or there is a reproducible increase of transcript levels. In patients harboring mutations which confer imatinib resistance, novel second line tyrosine kinase inhibitors have demonstrated encouraging efficacy with low toxicity. Only the T315I bcr-abl mutant has proved totally resistant to all clinically available bcr-abl inhibitors. Strategies to further increase the rates of complete molecular remissions represent the next frontier in the targeted therapy of CML patients
Reversible melting and equilibrium phase formation of (Bi,Pb)2Sr2Ca2Cu3O10+d
The decomposition and the reformation of the (Bi,Pb)2Sr2Ca2Cu3O10+d
(?Bi,Pb(2223)?) phase have been investigated in-situ by means of
High-Temperature Neutron Diffraction, both in sintered bulk samples and in
Ag-sheathed monofilamentary tapes. Several decomposition experiments were
performed at various temperatures and under various annealing atmospheres,
under flowing gas as well as in sealed tubes, in order to study the appropriate
conditions for Bi,Pb(2223) formation from the melt. The Bi,Pb(2223) phase was
found to melt incongruently into (Ca,Sr)2CuO3, (Sr,Ca)14Cu24O41 and a
Pb,Bi-rich liquid phase. Phase reformation after melting was successfully
obtained both in bulk samples and Ag-sheathed tapes. The possibility of
crystallising the Bi,Pb(2223) phase from the melt was found to be extremely
sensitive to the temperature and strongly dependent on the Pb losses. The study
of the mass losses due to Pb evaporation was complemented by thermogravimetric
analysis which proved that Pb losses are responsible for moving away from
equilibrium and therefore hinder the reformation of the Bi,Pb(2223) phase from
the melt. Thanks to the full pattern profile refinement, a quantitative phase
analysis was carried out as a function of time and temperature and the role of
the secondary phases was investigated. Lattice distortions and/or transitions
were found to occur at high temperature in Bi,Pb(2223), Bi,Pb(2212),
(Ca,Sr)2CuO3 and (Sr,Ca)14Cu24O41, due to cation diffusion and stoichiometry
changes. The results indicate that it is possible to form the Bi,Pb(2223) phase
from a liquid close to equilibrium conditions, like Bi(2212) and Bi(2201), and
open new unexplored perspectives for high-quality Ag-sheathed Bi,Pb(2223) tape
processing.Comment: 45 pages (including references,figures and captions), 13 figures
Submitted to Supercond. Sci. Techno
't Hooft Operators in Gauge Theory from Toda CFT
We construct loop operators in two dimensional Toda CFT and calculate with
them the exact expectation value of certain supersymmetric 't Hooft and dyonic
loop operators in four dimensional \Ncal=2 gauge theories with SU(N) gauge
group. Explicit formulae for 't Hooft and dyonic operators in \Ncal=2^* and
\Ncal=2 conformal SQCD with SU(N) gauge group are presented. We also briefly
speculate on the Toda CFT realization of arbitrary loop operators in these
gauge theories in terms of topological web operators in Toda CFT.Comment: 49 pages, LaTeX. Typos fixed, references adde
Holographic Gauge Theories in Background Fields and Surface Operators
We construct a new class of supersymmetric surface operators in N=4 SYM and
find the corresponding dual supergravity solutions. We show that the insertion
of the surface operator - which is given by a WZW model supported on the
surface - appears by integrating out the localized degrees of freedom along the
surface which arise microscopically from a D3/D7 brane intersection.
Consistency requires constructing N=4 SYM in the D7 supergravity background and
not in flat space. This enlarges the class of holographic gauge theories dual
to string theory backgrounds to gauge theories in non-trivial supergravity
backgrounds. The dual Type IIB supergravity solutions we find reveal - among
other features - that the holographic dual gauge theory does indeed live in the
D7-brane background.Comment: 42 pages, harvmac, corrected typo
Worldvolume Superalgebra Of BLG Theory With Nambu-Poisson Structure
Recently it was proposed that the Bagger-Lambert-Gustavsson theory with
Nambu-Poisson structure describes an M5-brane in a three-form flux background.
In this paper we investigate the superalgebra associated with this theory. We
derive the central charges corresponding to M5-brane solitons in 3-form
backgrounds. We also show that double dimensional reduction of the superalgebra
gives rise to the Poisson bracket terms of a non-commutative D4-brane
superalgebra. We provide interpretations of the D4-brane charges in terms of
spacetime intersections.Comment: 23 pages; references added, section 4 clarification
On "Dotsenko-Fateev" representation of the toric conformal blocks
We demonstrate that the recent ansatz of arXiv:1009.5553, inspired by the
original remark due to R.Dijkgraaf and C.Vafa, reproduces the toric conformal
blocks in the same sense that the spherical blocks are given by the integral
representation of arXiv:1001.0563 with a peculiar choice of open integration
contours for screening insertions. In other words, we provide some evidence
that the toric conformal blocks are reproduced by appropriate beta-ensembles
not only in the large-N limit, but also at finite N. The check is explicitly
performed at the first two levels for the 1-point toric functions.
Generalizations to higher genera are briefly discussed.Comment: 10 page
- …
