66 research outputs found

    Enhancement of Naringenin Bioavailability by Complexation with Hydroxypropoyl-β-Cyclodextrin

    Get PDF
    The abundant flavonoid aglycone, naringenin, which is responsible for the bitter taste in grapefruits, has been shown to possess hypolipidemic and anti-inflammatory effects both in vitro and in vivo. Recently, our group demonstrated that naringenin inhibits hepatitis C virus (HCV) production, while others demonstrated its potential in the treatment of hyperlipidemia and diabetes. However, naringenin suffers from low oral bioavailability critically limiting its clinical potential. In this study, we demonstrate that the solubility of naringenin is enhanced by complexation with β-cyclodextrin, an FDA approved excipient. Hydroxypropoyl-β-cyclodextrin (HPβCD), specifically, increased the solubility of naringenin by over 400-fold, and its transport across a Caco-2 model of the gut epithelium by 11-fold. Complexation of naringenin with HPβCD increased its plasma concentrations when fed to rats, with AUC values increasing by 7.4-fold and Cmax increasing 14.6-fold. Moreover, when the complex was administered just prior to a meal it decreased VLDL levels by 42% and increased the rate of glucose clearance by 64% compared to naringenin alone. These effects correlated with increased expression of the PPAR co-activator, PGC1α in both liver and skeletal muscle. Histology and blood chemistry analysis indicated this route of administration was not associated with damage to the intestine, kidney, or liver. These results suggest that the complexation of naringenin with HPβCD is a viable option for the oral delivery of naringenin as a therapeutic entity with applications in the treatment of dyslipidemia, diabetes, and HCV infection.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (K01DK080241)Harvard Clinical Nutrition Research Center (P30-DK040561)European Research Council (Starting Grant (TMIHCV 242699))Massachusetts General Hospital (BioMEMS Resource Center (P41 EB-002503))Alexander Silberman Institute of Life Science

    A genome-wide association study of anorexia nervosa.

    Get PDF
    Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field

    Using ancestry-informative markers to identify fine structure across 15 populations of European origin

    Get PDF
    The Wellcome Trust Case Control Consortium 3 anorexia nervosa genome-wide association scan includes 2907 cases from 15 different populations of European origin genotyped on the Illumina 670K chip. We compared methods for identifying population stratification, and suggest list of markers that may help to counter this problem. It is usual to identify population structure in such studies using only common variants with minor allele frequency (MAF) >5%; we find that this may result in highly informative SNPs being discarded, and suggest that instead all SNPs with MAF >1% may be used. We established informative axes of variation identified via principal component analysis and highlight important features of the genetic structure of diverse European-descent populations, some studied for the first time at this scale. Finally, we investigated the substructure within each of these 15 populations and identified SNPs that help capture hidden stratification. This work can provide information regarding the designing and interpretation of association results in the International Consortia.European Journal of Human Genetics advance online publication, 19 February 2014; doi:10.1038/ejhg.2014.1

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Associations between attention-deficit/hyperactivity disorder and various eating disorders: a Swedish nationwide population study using multiple genetically informative approaches

    Get PDF
    BACKGROUND: Although attention-deficit/hyperactivity disorder (ADHD) and eating disorders (EDs) frequently cooccur, little is known about the shared etiology. In this study, we comprehensively investigated the genetic association between ADHD and various EDs, including anorexia nervosa (AN) and other EDs such as bulimia nervosa.METHODS: We applied different genetically informative designs to register-based information of a Swedish nationwide population (N = 3,550,118). We first examined the familial coaggregation of clinically diagnosed ADHD and EDs across multiple types of relatives. We then applied quantitative genetic modeling in full-sisters and maternal half-sisters to estimate the genetic correlations between ADHD and EDs. We further tested the associations between ADHD polygenic risk scores and ED symptoms, and between AN polygenic risk scores and ADHD symptoms, in a genotyped population-based sample (N = 13,472).RESULTS: Increased risk of all types of EDs was found in individuals with ADHD (any ED: odds ratio [OR] = 3.97, 95% confidence interval [CI] = 3.81, 4.14; AN: OR = 2.68, 95% CI = 2.15, 2.86; other EDs: OR = 4.66, 95% CI = 4.47, 4.87; bulimia nervosa: OR = 5.01, 95% CI = 4.63, 5.41) and their relatives compared with individuals without ADHD and their relatives. The magnitude of the associations decreased as the degree of relatedness decreased, suggesting shared familial liability between ADHD and EDs. Quantitative genetic models revealed stronger genetic correlation of ADHD with other EDs (.37, 95% CI = .31, .42) than with AN (.14, 95% CI = .05, .22). ADHD polygenic risk scores correlated positively with ED symptom measures overall and with the subscales Drive for Thinness and Body Dissatisfaction despite small effect sizes.CONCLUSIONS: We observed stronger genetic association with ADHD for non-AN EDs than for AN, highlighting specific genetic correlation beyond a general genetic factor across psychiatric disorders.Stress-related psychiatric disorders across the life spa

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF

    β-Bracelets: Macrocyclic cross-β epitope mimics based on a tau conformational strain

    No full text
    The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer’s disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between sidechains on unique and distant β-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of β-arch peptide macrocycles comprised of the aggregation-prone PHF6 hexapeptide of tau and the cross-β module specific to the AD tau fold. Termed “β-bracelets”, these proteomimetics assemble in a sequence- and macrocycle-dependent fashion, resulting in amyloid-like fibrils that feature in-register parallel β-sheet structure. Backbone N-amination of a selected β-bracelet affords soluble inhibitors of tau aggregation. We further demonstrate that the N-aminated macrocycles block the prion-like cellular seeding activity of recombinant tau as well as mature fibrils from AD patient extracts. These studies establish β-bracelets as a new class of cross-β epitope mimic and demonstrate their utility in the rational design of molecules targeting amyloid propagation and seeding
    corecore