163 research outputs found

    Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards

    Full text link
    We present the expanded boundary integral method for solving the planar Helmholtz problem, which combines the ideas of the boundary integral method and the scaling method and is applicable to arbitrary shapes. We apply the method to a chaotic billiard with unidirectional transport, where we demonstrate existence of doublets of chaotic eigenstates, which are quasi-degenerate due to time-reversal symmetry, and a very particular level spacing distribution that attains a chaotic Shnirelman peak at short energy ranges and exhibits GUE-like statistics for large energy ranges. We show that, as a consequence of such particular level statistics or algebraic tunneling between disjoint chaotic components connected by time-reversal operation, the system exhibits quantum current reversals.Comment: 18 pages, 8 figures, with 3 additional GIF animations available at http://chaos.fiz.uni-lj.si/~veble/boundary

    Berry-Robnik level statistics in a smooth billiard system

    Full text link
    Berry-Robnik level spacing distribution is demonstrated clearly in a generic quantized plane billiard for the first time. However, this ultimate semi-classical distribution is found to be valid only for extremely small semi-classical parameter (effective Planck's constant) where the assumption of statistical independence of regular and irregular levels is achieved. For sufficiently larger semiclassical parameter we find (fractional power-law) level repulsion with phenomenological Brody distribution providing an adequate global fit.Comment: 10 pages in LaTeX with 4 eps figures include

    Regular and Irregular States in Generic Systems

    Full text link
    In this work we present the results of a numerical and semiclassical analysis of high lying states in a Hamiltonian system, whose classical mechanics is of a generic, mixed type, where the energy surface is split into regions of regular and chaotic motion. As predicted by the principle of uniform semiclassical condensation (PUSC), when the effective \hbar tends to 0, each state can be classified as regular or irregular. We were able to semiclassically reproduce individual regular states by the EBK torus quantization, for which we devise a new approach, while for the irregular ones we found the semiclassical prediction of their autocorrelation function, in a good agreement with numerics. We also looked at the low lying states to better understand the onset of semiclassical behaviour.Comment: 25 pages, 14 figures (as .GIF files), high quality figures available upon reques

    Sensitivity of the eigenfunctions and the level curvature distribution in quantum billiards

    Full text link
    In searching for the manifestations of sensitivity of the eigenfunctions in quantum billiards (with Dirichlet boundary conditions) with respect to the boundary data (the normal derivative) we have performed instead various numerical tests for the Robnik billiard (quadratic conformal map of the unit disk) for 600 shape parameter values, where we look at the sensitivity of the energy levels with respect to the shape parameter. We show the energy level flow diagrams for three stretches of fifty consecutive (odd) eigenstates each with index 1,000 to 2,000. In particular, we have calculated the (unfolded and normalized) level curvature distribution and found that it continuously changes from a delta distribution for the integrable case (circle) to a broad distribution in the classically ergodic regime. For some shape parameters the agreement with the GOE von Oppen formula is very good, whereas we have also cases where the deviation from GOE is significant and of physical origin. In the intermediate case of mixed classical dynamics we have a semiclassical formula in the spirit of the Berry-Robnik (1984) surmise. Here the agreement with theory is not good, partially due to the localization phenomena which are expected to disappear in the semiclassical limit. We stress that even for classically ergodic systems there is no global universality for the curvature distribution, not even in the semiclassical limit.Comment: 19 pages, file in plain LaTeX, 15 figures available upon request Submitted to J. Phys. A: Math. Ge

    Integrability and Ergodicity of Classical Billiards in a Magnetic Field

    Full text link
    We consider classical billiards in plane, connected, but not necessarily bounded domains. The charged billiard ball is immersed in a homogeneous, stationary magnetic field perpendicular to the plane. The part of dynamics which is not trivially integrable can be described by a "bouncing map". We compute a general expression for the Jacobian matrix of this map, which allows to determine stability and bifurcation values of specific periodic orbits. In some cases, the bouncing map is a twist map and admits a generating function which is useful to do perturbative calculations and to classify periodic orbits. We prove that billiards in convex domains with sufficiently smooth boundaries possess invariant tori corresponding to skipping trajectories. Moreover, in strong field we construct adiabatic invariants over exponentially large times. On the other hand, we present evidence that the billiard in a square is ergodic for some large enough values of the magnetic field. A numerical study reveals that the scattering on two circles is essentially chaotic.Comment: Explanations added in Section 5, Section 6 enlarged, small errors corrected; Large figures have been bitmapped; 40 pages LaTeX, 15 figures, uuencoded tar.gz. file. To appear in J. Stat. Phys. 8

    Deviations from Berry--Robnik Distribution Caused by Spectral Accumulation

    Full text link
    By extending the Berry--Robnik approach for the nearly integrable quantum systems,\cite{[1]} we propose one possible scenario of the energy level spacing distribution that deviates from the Berry--Robnik distribution. The result described in this paper implies that deviations from the Berry--Robnik distribution would arise when energy level components show strong accumulation, and otherwise, the level spacing distribution agrees with the Berry--Robnik distribution.Comment: 4 page

    Amplitude distribution of eigenfunctions in mixed systems

    Full text link
    We study the amplitude distribution of irregular eigenfunctions in systems with mixed classical phase space. For an appropriately restricted random wave model a theoretical prediction for the amplitude distribution is derived and good agreement with numerical computations for the family of limacon billiards is found. The natural extension of our result to more general systems, e.g. with a potential, is also discussed.Comment: 13 pages, 3 figures. Some of the pictures are included in low resolution only. For a version with pictures in high resolution see http://www.physik.uni-ulm.de/theo/qc/ or http://www.maths.bris.ac.uk/~maab

    On the Convergence to Ergodic Behaviour of Quantum Wave Functions

    Full text link
    We study the decrease of fluctuations of diagonal matrix elements of observables and of Husimi densities of quantum mechanical wave functions around their mean value upon approaching the semi-classical regime (0\hbar \rightarrow 0). The model studied is a spin (SU(2)) one in a classically strongly chaotic regime. We show that the fluctuations are Gaussian distributed, with a width σ2\sigma^2 decreasing as the square root of Planck's constant. This is consistent with Random Matrix Theory (RMT) predictions, and previous studies on these fluctuations. We further study the width of the probability distribution of \hbar-dependent fluctuations and compare it to the Gaussian Orthogonal Ensemble (GOE) of RMT.Comment: 13 pages Latex, 5 figure

    Separating the regular and irregular energy levels and their statistics in Hamiltonian system with mixed classical dynamics

    Full text link
    We look at the high-lying eigenstates (from the 10,001st to the 13,000th) in the Robnik billiard (defined as a quadratic conformal map of the unit disk) with the shape parameter λ=0.15\lambda=0.15. All the 3,000 eigenstates have been numerically calculated and examined in the configuration space and in the phase space which - in comparison with the classical phase space - enabled a clear cut classification of energy levels into regular and irregular. This is the first successful separation of energy levels based on purely dynamical rather than special geometrical symmetry properties. We calculate the fractional measure of regular levels as ρ1=0.365±0.01\rho_1=0.365\pm 0.01 which is in remarkable agreement with the classical estimate ρ1=0.360±0.001\rho_1=0.360\pm 0.001. This finding confirms the Percival's (1973) classification scheme, the assumption in Berry-Robnik (1984) theory and the rigorous result by Lazutkin (1981,1991). The regular levels obey the Poissonian statistics quite well whereas the irregular sequence exhibits the fractional power law level repulsion and globally Brody-like statistics with β=0.286±0.001\beta = 0.286\pm0.001. This is due to the strong localization of irregular eigenstates in the classically chaotic regions. Therefore in the entire spectrum we see that the Berry-Robnik regime is not yet fully established so that the level spacing distribution is correctly captured by the Berry-Robnik-Brody distribution (Prosen and Robnik 1994).Comment: 20 pages, file in plain LaTeX, 7 figures upon request submitted to J. Phys. A. Math. Gen. in December 199

    Thermo-statistical description of gas mixtures from space partitions

    Get PDF
    The new mathematical framework based on the free energy of pure classical fluids presented in [R. D. Rohrmann, Physica A 347, 221 (2005)] is extended to multi-component systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on DD-dimensional mixtures in the low-density limit (packing factor η<0.01\eta < 0.01). The formalism combines the free-energy minimization technique with space partitions that assign an available volume vv to each particle. vv is related to the closeness of the nearest neighbor and provides an useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil\mu_{il}, conjugate variable of the populations NilN_{il} of particles class ii with the nearest neighbors of class ll are defined and their relationships with the usual chemical potentials μi\mu_i are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to K\^ac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.Comment: 14 pages, 8 figures. Accepted for publication in Physical Review
    corecore