733 research outputs found
Mapping loci for chlorosis associated with chlorophyII b deficiency in potato
About 30% of the potato plants from a (Solanum tuberosum × S. berthaultii) × S. tuberosum backcross population had chlorotic, malformed leaves; but a gradation in symptom severity suggested regulation by more than one gene. The study was undertaken to determine whether this was the case, whether any genes previously reported to control chlorosis in potato were involved, and to see how symptoms were related to effects on chlorophyll content. Testing for quantitative trait loci indicated major control by a single recessive gene on chromosome 1, close to one or more loci that have been reported to produce chlorosis in tomato, but distinct from similar genes previously identified in potato. The proposed symbol for the potato gene that confers phenotype with chlorotic and malformed leaves is cml (chlorotic and malformed leaves). The effects of this gene appeared to be accentuated by a second gene, located on chromosome 12. Chlorotic plants showed a 50% decrease in chlorophyll b level in the affected parts of leaves. It is concluded that cml is different from previously reported genes for chlorosis in potato, that at least one other gene modifies the intensity of symptom expression, and that the observed chlorosis is produced through effects on chlorophyll b level
HEP Software Foundation Community White Paper Working Group - Data and Software Preservation to Enable Reuse
In this chapter of the High Energy Physics Software Foundation Community
Whitepaper, we discuss the current state of infrastructure, best practices, and
ongoing developments in the area of data and software preservation in high
energy physics. A re-framing of the motivation for preservation to enable
re-use is presented. A series of research and development goals in software and
other cyberinfrastructure that will aid in the enabling of reuse of particle
physics analyses and production software are presented and discussed
Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton
According to the CPT theorem, which states that the combined operation of
charge conjugation, parity transformation and time reversal must be conserved,
particles and their antiparticles should have the same mass and lifetime but
opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus
containing a strange quark, more specifically in the hypertriton. This
hypernucleus is the lightest one yet discovered and consists of a proton, a
neutron, and a hyperon. With data recorded by the STAR
detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure
the hyperon binding energy for the hypertriton, and
find that it differs from the widely used value{\cite{B_1973}} and from
predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the
hypertriton is treated as a weakly bound system. Our results place stringent
constraints on the hyperon-nucleon interaction{\cite{Hammer2002,
STAR-antiH3L}}, and have implications for understanding neutron star interiors,
where strange matter may be present{\cite{Chatterjee2016}}. A precise
comparison of the masses of the hypertriton and the antihypertriton allows us
to test CPT symmetry in a nucleus with strangeness for the first time, and we
observe no deviation from the expected exact symmetry
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
- …
