3,141 research outputs found

    The index of projective families of elliptic operators: the decomposable case

    Get PDF
    An index theory for projective families of elliptic pseudodifferential operators is developed under two conditions. First, that the twisting, i.e. Dixmier-Douady, class is in H2(X; Z)[H1(X; Z) H3(X; Z) and secondly that the 2-class part is trivialized on the total space of the fibration. One of the features of this special case is that the corresponding Azumaya bundle can be refined to a bundle of smoothing operators. The topological and the analytic index of a projective family of elliptic operators associated with the smooth Azumaya bundle both take values in twisted K-theory of the parameterizing space and the main result is the equality of these two notions of index. The twisted Chern character of the index class is then computed by a variant of Chern-Weil theory.V. Mathai, R.B. Melrose and I.M. Singe

    Evolution of electromagnetic and Dirac perturbations around a black hole in Horava gravity

    Full text link
    The evolution of electromagnetic and Dirac perturbations in the spacetime geometry of Kehagias-Sfetsos(KS) black hole in the deformed Horava-Lifshitz(HL) gravity is investigated and the associated quasinormal modes are evaluated using time domain integration and WKB methods. We find a considerable deviation in the nature of field evolution in HL theory from that in the Schwarzschild spacetime and QNMs region extends over a longer time in HL theory before the power-law tail decay begins. The dependence of the field evolution on the HL parameter α\alpha are studied. In the time domain picture we find that the length of QNM region increases with α\alpha. But the late time decay of field follows the same power-law tail behavior as in the case of Schwarzschild black hole.Comment: The article was fully rewritten, references added, to appear in MPL

    Probiotic effects of lactic acid bacteria against Vibrio alginolyticus in Penaeus (Fenneropenaeus) indicus (H. Milne Edwards)

    Get PDF
    Cell free extracts of four strains of Lactic acid bacteria (LAB) viz. Lactobacillus. acidophilus, Streptococcus.cremoris, Lactobacillus bulgaricus –56 and Lactobacillus bulgaricus –57 inhibited growth of Vibrio alginolyticus in nutrient broth. The antagonism of LAB to Vibrio alginolyticus was further confirmed by streak plating wherein suppression of growth of Vibrio was obtained. Juveniles of Penaeus indicus (average weight 0.985 ± 0.1 g) on administering orally a moist feed base containing 5 × 106 cells·g of the four LAB probionts for a period of four weeks showed better survival (56 to 72%) when challenged with V. alginolyticus by intra-muscular injection of 0.1 ml containing 3 × 109 cells·ml. Animals maintained on a diet devoid of bacterial biomass exhibited 80% mortality

    Star cluster evolution in barred disc galaxies. I. Planar periodic orbits

    Full text link
    The dynamical evolution of stellar clusters is driven to a large extent by their environment. Several studies so far have considered the effect of tidal fields and their variations, such as, e.g., from giant molecular clouds, galactic discs, or spiral arms. In this paper we will concentrate on a tidal field whose effects on star clusters have not yet been studied, namely that of bars. We present a set of direct N-body simulations of star clusters moving in an analytic potential representing a barred galaxy. We compare the evolution of the clusters moving both on different planar periodic orbits in the barred potential and on circular orbits in a potential obtained by axisymmetrising its mass distribution. We show that both the shape of the underlying orbit and its stability have strong impact on the cluster evolution as well as the morphology and orientation of the tidal tails and the sub-structures therein. We find that the dissolution time-scale of the cluster in our simulations is mainly determined by the tidal forcing along the orbit and, for a given tidal forcing, only very little by the exact shape of the gravitational potential in which the cluster is moving.Comment: 15 pages, 17 figures, 5 tables; accepted for publication in MNRAS. Complementary movies can be be found at this http URL http://lam.oamp.fr/research/dynamique-des-galaxies/scientific-results/star-cluster-evolution

    Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree

    Full text link
    We present algorithms for distributed verification and silent-stabilization of a DFS(Depth First Search) spanning tree of a connected network. Computing and maintaining such a DFS tree is an important task, e.g., for constructing efficient routing schemes. Our algorithm improves upon previous work in various ways. Comparable previous work has space and time complexities of O(nlogΔ)O(n\log \Delta) bits per node and O(nD)O(nD) respectively, where Δ\Delta is the highest degree of a node, nn is the number of nodes and DD is the diameter of the network. In contrast, our algorithm has a space complexity of O(logn)O(\log n) bits per node, which is optimal for silent-stabilizing spanning trees and runs in O(n)O(n) time. In addition, our solution is modular since it utilizes the distributed verification algorithm as an independent subtask of the overall solution. It is possible to use the verification algorithm as a stand alone task or as a subtask in another algorithm. To demonstrate the simplicity of constructing efficient DFS algorithms using the modular approach, We also present a (non-sielnt) self-stabilizing DFS token circulation algorithm for general networks based on our silent-stabilizing DFS tree. The complexities of this token circulation algorithm are comparable to the known ones

    Observational constraints on Horava-Lifshitz cosmology

    Full text link
    We use observational data from Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB), along with requirements of Big Bang Nucleosynthesis (BBN), to constrain the cosmological scenarios governed by Horava-Lifshitz gravity. We consider both the detailed and non-detailed balance versions of the gravitational sector, and we include the matter and radiation sectors. We conclude that the detailed-balance scenario cannot be ruled out from the observational point of view, however the corresponding likelihood contours impose tight constraints on the involved parameters. The scenario beyond detailed balance is compatible with observational data, and we present the corresponding stringent constraints and contour-plots of the parameters. Although this analysis indicates that Horava-Lifshitz cosmology can be compatible with observations, it does not enlighten the discussion about its possible conceptual and theoretical problems.Comment: 11 pages, 6 figures, version published in JCA

    Nematic liquid crystal alignment on chemical patterns

    Get PDF
    Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 ¹m homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p

    Spectral Line-by-Line Pulse Shaping of an On-Chip Microresonator Frequency Comb

    Get PDF
    We report, for the first time to the best of our knowledge, spectral phase characterization and line-by-line pulse shaping of an optical frequency comb generated by nonlinear wave mixing in a microring resonator. Through programmable pulse shaping the comb is compressed into a train of near-transform-limited pulses of \approx 300 fs duration (intensity full width half maximum) at 595 GHz repetition rate. An additional, simple example of optical arbitrary waveform generation is presented. The ability to characterize and then stably compress the frequency comb provides new data on the stability of the spectral phase and suggests that random relative frequency shifts due to uncorrelated variations of frequency dependent phase are at or below the 100 microHertz level.Comment: 18 pages, 4 figure

    Thin accretion disk signatures of slowly rotating black holes in Ho\v{r}ava gravity

    Get PDF
    In the present work, we consider the possibility of observationally testing Ho\v{r}ava gravity by using the accretion disk properties around slowly rotating black holes of the Kehagias-Sfetsos solution in asymptotically flat spacetimes. The energy flux, temperature distribution, the emission spectrum as well as the energy conversion efficiency are obtained, and compared to the standard slowly rotating general relativistic Kerr solution. Comparing the mass accretion in a slowly rotating Kehagias-Sfetsos geometry in Ho\v{r}ava gravity with the one of a slowly rotating Kerr black hole, we verify that the intensity of the flux emerging from the disk surface is greater for the slowly rotating Kehagias-Sfetsos solution than for rotating black holes with the same geometrical mass and accretion rate. We also present the conversion efficiency of the accreting mass into radiation, and show that the rotating Kehagias-Sfetsos solution provides a much more efficient engine for the transformation of the accreting mass into radiation than the Kerr black holes. Thus, distinct signatures appear in the electromagnetic spectrum, leading to the possibility of directly testing Ho\v{r}ava gravity models by using astrophysical observations of the emission spectra from accretion disks.Comment: 12 pages, 15 figures. V2: 13 pages, clarifications and discussion added; version accepted for publication in Classical and Quantum Gravit
    corecore