1,881 research outputs found
On surrogate loss functions and -divergences
The goal of binary classification is to estimate a discriminant function
from observations of covariate vectors and corresponding binary
labels. We consider an elaboration of this problem in which the covariates are
not available directly but are transformed by a dimensionality-reducing
quantizer . We present conditions on loss functions such that empirical risk
minimization yields Bayes consistency when both the discriminant function and
the quantizer are estimated. These conditions are stated in terms of a general
correspondence between loss functions and a class of functionals known as
Ali-Silvey or -divergence functionals. Whereas this correspondence was
established by Blackwell [Proc. 2nd Berkeley Symp. Probab. Statist. 1 (1951)
93--102. Univ. California Press, Berkeley] for the 0--1 loss, we extend the
correspondence to the broader class of surrogate loss functions that play a key
role in the general theory of Bayes consistency for binary classification. Our
result makes it possible to pick out the (strict) subset of surrogate loss
functions that yield Bayes consistency for joint estimation of the discriminant
function and the quantizer.Comment: Published in at http://dx.doi.org/10.1214/08-AOS595 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
The goal of a decision-based adversarial attack on a trained model is to
generate adversarial examples based solely on observing output labels returned
by the targeted model. We develop HopSkipJumpAttack, a family of algorithms
based on a novel estimate of the gradient direction using binary information at
the decision boundary. The proposed family includes both untargeted and
targeted attacks optimized for and similarity metrics
respectively. Theoretical analysis is provided for the proposed algorithms and
the gradient direction estimate. Experiments show HopSkipJumpAttack requires
significantly fewer model queries than Boundary Attack. It also achieves
competitive performance in attacking several widely-used defense mechanisms.
(HopSkipJumpAttack was named Boundary Attack++ in a previous version of the
preprint.
- …
