5,052 research outputs found
Study of several factors affecting crew escape trajectories from the Space Shuttle Orbiter at low-subsonic speeds
Factors affecting the bailout characteristics from the space shuttle orbiter at low-subsonic speeds were investigated. In the 12-foot low-speed tunnel and the 4 by 7-meter tunnel with 0.03-scale models. The effect of crew-model exit velocity, body position, and body weight were studied with egress from the main side hatch with the orbiter upright and from the upper cabin hatch with the orbiter inverted. Crew model drag and flow field measurements around the orbiter were estimated. The high-angle-of-attack trim characteristics of the orbiter was determined by force tests in an attempt to improve bailout conditions. A computer simulation was made to evaluate the maneuver necessary to attain the high-angle-of-attack trim
Magnetically controlled exciton transfer in hybrid quantum dot-quantum well nanostructures
A magnetophotoluminescence study of the carrier transfer with hybrid
InAs/GaAs quantum dot(QD)-InGaAs quantum well (QW) structures is carried out
where we observe an unsual dependence of the photoluminescence (PL) on the GaAs
barrier thickness at strong magnetic field and excitation density. For the case
of a thin barrier the QW PL intensity is observed to increase at the expense of
a decrease in the QD PL intensity. This is attributed to changes in the
interplane carrier dynamics in the QW and the wetting layer (WL) resulting from
increasing the magnetic field along with changes in the coupling between QD
excited states and exciton states in the QW and the WL
Structuring visual exploratory analysis of skill demand
The analysis of increasingly large and diverse data for meaningful interpretation and question answering is handicapped by human cognitive limitations. Consequently, semi-automatic abstraction of complex data within structured information spaces becomes increasingly important, if its knowledge content is to support intuitive, exploratory discovery. Exploration of skill demand is an area where regularly updated, multi-dimensional data may be exploited to assess capability within the workforce to manage the demands of the modern, technology- and data-driven economy. The knowledge derived may be employed by skilled practitioners in defining career pathways, to identify where, when and how to update their skillsets in line with advancing technology and changing work demands. This same knowledge may also be used to identify the combination of skills essential in recruiting for new roles. To address the challenges inherent in exploring the complex, heterogeneous, dynamic data that feeds into such applications, we investigate the use of an ontology to guide structuring of the information space, to allow individuals and institutions to interactively explore and interpret the dynamic skill demand landscape for their specific needs. As a test case we consider the relatively new and highly dynamic field of Data Science, where insightful, exploratory data analysis and knowledge discovery are critical. We employ context-driven and task-centred scenarios to explore our research questions and guide iterative design, development and formative evaluation of our ontology-driven, visual exploratory discovery and analysis approach, to measure where it adds value to users’ analytical activity. Our findings reinforce the potential in our approach, and point us to future paths to build on
The aerodynamic challenges of the design and development of the space shuttle orbiter
The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies
Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II).
The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH2CMe2 (a), the bidentate N-(2-aminoethyl)aziridines C2H4NC2H4NH2 (b) or CH2CMe2NCH2CMe2NH2 (c) as well as the unsaturated azirine NCH2CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [μ-Cl(C6H4CHMeNMe2-C,N)Pd]2 with ligand a yielded compound [Cl(NHCH2CMe2)(C6H4CHMe2NMe2-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl2Pd(HNC2H4)2] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C2H4NC2H4NH2-N,N′)2Pd](OTf)2 (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines (“aziridine dimerization”). CuCl2 reacted in pure HNC2H4 or HNCH2CMe2 (b) again by “dimerization” to give the tris-chelated ionic complex [Cu(C2H4NC2H4NH2-N,N′)3]Cl2 (3b) or the bis-chelated complex [CuCl(C2H2Me2NC2H2Me2NH2-N,N′)2]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl2, trans-[Cl2Pd(NCH2CPh)2] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5–300.0 μg mL−1. However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 μg mL−1. The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria.
Graphical abstract: Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(ii) and palladium(ii
Polarization sensitive spectroscopy of charged Quantum Dots
We present an experimental and theoretical study of the polarized
photoluminescence spectrum of single semiconductor quantum dots in various
charge states. We compare our high resolution polarization sensitive spectral
measurements with a new many-carrier theoretical model, which was developed for
this purpose. The model considers both the isotropic and anisotropic exchange
interactions between all participating electron-hole pairs. With this addition,
we calculate both the energies and polarizations of all optical transitions
between collective, quantum dot confined charge carrier states. We succeed in
identifying most of the measured spectral lines. In particular, the lines
resulting from singly-, doubly- and triply- negatively charged excitons and
biexcitons. We demonstrate that lines emanating from evenly charged states are
linearly polarized. Their polarization direction does not necessarily coincide
with the traditional crystallographic direction. It depends on the shells of
the single carriers, which participate in the recombination process.Comment: 11 pages, 9 figures. Revised versio
Evaluation of two interaction techniques for visualization of dynamic graphs
Several techniques for visualization of dynamic graphs are based on different
spatial arrangements of a temporal sequence of node-link diagrams. Many studies
in the literature have investigated the importance of maintaining the user's
mental map across this temporal sequence, but usually each layout is considered
as a static graph drawing and the effect of user interaction is disregarded. We
conducted a task-based controlled experiment to assess the effectiveness of two
basic interaction techniques: the adjustment of the layout stability and the
highlighting of adjacent nodes and edges. We found that generally both
interaction techniques increase accuracy, sometimes at the cost of longer
completion times, and that the highlighting outclasses the stability adjustment
for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Arthroscopic Treatment of Acetabular Retroversion With Acetabuloplasty and Subspine Decompression: A Matched Comparison With Patients Undergoing Arthroscopic Treatment for Focal Pincer-Type Femoroacetabular Impingement.
BackgroundGlobal acetabular retroversion is classically treated with open reverse periacetabular osteotomy. Given the low morbidity and recent success associated with the arthroscopic treatment of femoroacetabular impingement (FAI), there may also be a role for arthroscopic treatment of acetabular retroversion. However, the safety and outcomes after hip arthroscopic surgery for retroversion need further study, and the effect of impingement from the anterior inferior iliac spine (subspine) in patients with retroversion is currently unknown.HypothesisArthroscopic treatment for global acetabular retroversion will be safe, and patients will have similar outcomes compared with a matched group undergoing arthroscopic treatment for focal pincer-type FAI.Study designCohort study; Level of evidence, 2.MethodsPatients undergoing hip arthroscopic surgery for symptomatic global acetabular retroversion were prospectively enrolled and compared with a matched group of patients undergoing arthroscopic surgery for focal pincer-type FAI. Both groups underwent the same arthroscopic treatment protocol. All patients were administered patient-reported outcome (PRO) measures, including the 12-item Short-Form Health Survey (SF-12) Physical Component Summary (PCS) and a Mental Component Summary (MCS), modified Harris Hip Score (mHHS), Hip disability and Osteoarthritis Outcome Score (HOOS), and visual analog scale (VAS) for pain preoperatively and at 1 year postoperatively.ResultsThere were no differences in age, sex, or body mass index between 39 hips treated for global acetabular retroversion and 39 hips treated for focal pincer-type FAI. There were no major or minor complications in either group. Patients who underwent arthroscopic treatment for global acetabular retroversion demonstrated similar significant improvements in postoperative PRO scores (scores increased by 17 to 43 points) as patients who underwent arthroscopic treatment for focal pincer-type FAI. Patients treated for retroversion who also underwent subspine decompression had greater improvement than patients who did not undergo subspine decompression for the HOOS-Pain (33.7 ± 15.3 vs 22.5 ± 17.6, respectively; P = .046) and HOOS-Quality of Life (49.7 ± 18.8 vs 34.6 ± 22.0, respectively; P = .030) scores.ConclusionArthroscopic treatment for acetabular retroversion is safe and provides significant clinical improvement similar to arthroscopic treatment for pincer-type FAI. Patients with acetabular retroversion who also underwent arthroscopic subspine decompression demonstrated greater improvements in pain and quality of life outcomes than those who underwent arthroscopic treatment without subspine decompression
- …
