2,928 research outputs found

    Finite-size scaling exponents and entanglement in the two-level BCS model

    Full text link
    We analyze the finite-size properties of the two-level BCS model. Using the continuous unitary transformation technique, we show that nontrivial scaling exponents arise at the quantum critical point for various observables such as the magnetization or the spin-spin correlation functions. We also discuss the entanglement properties of the ground state through the concurrence which appears to be singular at the transition.Comment: 4 pages, 3 figures, published versio

    Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model

    Full text link
    We analyze the finite-size scaling exponents in the Lipkin-Meshkov-Glick model by means of the Holstein-Primakoff representation of the spin operators and the continuous unitary transformations method. This combination allows us to compute analytically leading corrections to the ground state energy, the gap, the magnetization, and the two-spin correlation functions. We also present numerical calculations for large system size which confirm the validity of this approach. Finally, we use these results to discuss the entanglement properties of the ground state focusing on the (rescaled) concurrence that we compute in the thermodynamical limit.Comment: 20 pages, 9 figures, published versio

    Cooperative localization-delocalization in the high Tc cuprates

    Full text link
    The intrinsic metastable crystal structure of the cuprates results in local dynamical lattice instabilities, strongly coupled to the density fluctuations of the charge carriers. They acquire in this way simultaneously both, delocalized and localized features. It is responsible for a partial fractioning of the Fermi surface, i.e., the Fermi surface gets hidden in a region around the anti-nodal points, because of the opening of a pseudogap in the normal state, arising from a partial charge localization. The high energy localized single-particle features are a result of a segregation of the homogeneous crystal structure into checker-board local nano-size structures, which breaks the local translational and rotational symmetry. The pairing in such a system is dynamical rather than static, whereby charge carriers get momentarily trapped into pairs in a deformable dynamically fluctuating ligand environment. We conclude that the intrinsically heterogeneous structure of the cuprates must play an important role in this type of superconductivity.Comment: 14 pages, 8 figures, Proceedings of the "International Conference on Condensed Matter Theories", Quito, 2009 Int. J. Mod. Phys. B 2010 (Accepted

    Multifractality: generic property of eigenstates of 2D disordered metals.

    Full text link
    The distribution function of local amplitudes of eigenstates of a two-dimensional disordered metal is calculated. Although the distribution of comparatively small amplitudes is governed by laws similar to those known from the random matrix theory, its decay at larger amplitudes is non-universal and much slower. This leads to the multifractal behavior of inverse participation numbers at any disorder. From the formal point of view, the multifractality originates from non-trivial saddle-point solutions of supersymmetric σ\sigma-model used in calculations.Comment: 4 two-column pages, no figures, submitted to PRL

    On the effect of far impurities on the density of states of two-dimensional electron gas in a strong magnetic field

    Full text link
    The effect of impurities situated at different distances from a two-dimensional electron gas on the density of states in a strong magnetic field is analyzed. Based on the exact result of Brezin, Gross, and Itzykson, we calculate the density of states in the whole energy range, assuming the Poisson distribution of impurities in the bulk. It is shown that in the case of small impurity concentration the density of states is qualitatively different from the model case when all impurities are located in the plane of the two-dimensional electron gas.Comment: 6 pages, 1 figure, submitted to JETP Letter

    Flows on scales of 150 Mpc?

    Get PDF
    We investigate the reality of large-scale streaming on scales of up to 150 Mpc using the peculiar motions of galaxies in three directions. New R-band CCD photometry and spectroscopy for elliptical galaxies is used. The Fundamental Plane distance indicator is calibrated using the Coma cluster and an inhomogeneous Malmquist bias correction is applied. A linear bulk-flow model is fitted to the peculiar velocities in the sample regions and the results do not reflect the bulk flow observed by Lauer and Postman (LP). Accounting for the difference in geometry between the galaxy distribution in the three regions and the LP clustersconfirms the disagreement; assuming a low-density CDM power spectrum, we find that the observed bulk flow of the galaxies in our sample excludes the LP bulk flow at the 99.8% confidence level.Comment: 16 pages, 1 figur

    Measuring Luttinger Liquid Correlations from Charge Fluctuations in a Nanoscale Structure

    Full text link
    We suggest an experiment to study Luttinger liquid behavior in a one-dimensional nanostructure, avoiding the usual complications associated with transport measurements. The proposed setup consists of a quantum box, biased by a gate voltage, and side-coupled to a quantum wire by a point contact. Close to the degeneracy points of the Coulomb blockaded box, and in the presence of a magnetic field sufficiently strong to spin polarize the electrons, the setup can be described as a Luttinger liquid interacting with an effective Kondo impurity. Using exact nonperturbative techniques we predict that the differential capacitance of the box will exhibit distinctive Luttinger liquid scaling with temperature and gate voltage.Comment: REVTeX, 4 pages, 1 figure included. Final version, two references adde

    Critical wave-packet dynamics in the power-law bond disordered Anderson Model

    Get PDF
    We investigate the wave-packet dynamics of the power-law bond disordered one-dimensional Anderson model with hopping amplitudes decreasing as HnmnmαH_{nm}\propto |n-m|^{-\alpha}. We consider the critical case (α=1\alpha=1). Using an exact diagonalization scheme on finite chains, we compute the participation moments of all stationary energy eigenstates as well as the spreading of an initially localized wave-packet. The eigenstates multifractality is characterized by the set of fractal dimensions of the participation moments. The wave-packet shows a diffusive-like spread developing a power-law tail and achieves a stationary non-uniform profile after reflecting at the chain boundaries. As a consequence, the time-dependent participation moments exhibit two distinct scaling regimes. We formulate a finite-size scaling hypothesis for the participation moments relating their scaling exponents to the ones governing the return probability and wave-function power-law decays

    Bosonization for disordered and chaotic systems

    Full text link
    Using a supersymmetry formalism, we reduce exactly the problem of electron motion in an external potential to a new supermatrix model valid at all distances. All approximate nonlinear sigma models obtained previously for disordered systems can be derived from our exact model using a coarse-graining procedure. As an example, we consider a model for a smooth disorder and demonstrate that using our approach does not lead to a 'mode-locking' problem. As a new application, we consider scattering on strong impurities for which the Born approximation cannot be used. Our method provides a new calculational scheme for disordered and chaotic systems.Comment: 4 pages, no figure, REVTeX4; title changed, revision for publicatio

    Nuclear Resonance Vibrational Spectroscopy of Iron Sulfur Proteins

    Full text link
    Nuclear inelastic scattering in conjunction with density functional theory (DFT) calculations has been applied for the identification of vibrational modes of the high-spin ferric and the high-spin ferrous iron-sulfur center of a rubredoxin-type protein from the thermophylic bacterium Pyrococcus abysii
    corecore