8,901 research outputs found
Revealing the Exciton Fine Structure in PbSe Nanocrystal Quantum Dots
We measure the photoluminescence (PL) lifetime, , of excitons in
colloidal PbSe nanocrystals (NCs) at low temperatures to 270~mK and in high
magnetic fields to 15~T. For all NCs (1.3-2.3~nm radii), increases
sharply below 10~K but saturates by 500~mK. In contrast to the usual picture of
well-separated ``bright" and ``dark" exciton states (found, e.g., in CdSe NCs),
these dynamics fit remarkably well to a system having two exciton states with
comparable - but small - oscillator strengths that are separated by only
300-900 eV. Importantly, magnetic fields reduce below 10~K,
consistent with field-induced mixing between the two states. Magnetic circular
dichroism studies reveal exciton g-factors from 2-5, and magneto-PL shows
10\% circularly polarized emission.Comment: To appear in Physical Review Letter
Electroexcitation of the P33(1232), P11(1440), D13(1520), S11(1535) at Q^2=0.4 and 0.65(GeV/c)^2
Using two approaches: dispersion relations and isobar model, we have analyzed
recent high precision CLAS data on cross sections of \pi^0, \pi^+, and \eta
electroproduction on protons, and the longitudinally polarized electron beam
asymmetry for p(\vec{e},e'p)\pi^0 and p(\vec{e},e'n)\pi^+. The contributions of
the resonances P33(1232), P11(1440), D13(1520), S11(1535) to \pi
electroproduction and S11(1535) to \eta electroproduction are found. The
results obtained in the two approaches are in good agreement with each other.
There is also good agreement between amplitudes of the \gamma^* N \to S11(1535)
transition found in \pi and \eta electroproduction. For the first time accurate
results are obtained for the longitudinal amplitudes of the P11(1440),
D13(1520) and S11(1535) electroexcitation on protons.Comment: 9 pages, 9 figure
Generation of Three-Qubit Entangled W-State by Nonlinear Optical State Truncation
We propose an alternative scheme to generate W state via optical state
truncation using quantum scissors. In particular, these states may be generated
through three-mode optical state truncation in a Kerr nonlinear coupler. The
more general three-qubit state may be also produced if the system is driven by
external classical fields.Comment: 7 pages, 2 figur
Production and optical properties of liquid scintillator for the JSNS experiment
The JSNS (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron
Source) experiment will search for neutrino oscillations over a 24 m short
baseline at J-PARC. The JSNS inner detector will be filled with 17 tons
of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of
unloaded LS in the intermediate -catcher and outer veto volumes.
JSNS has chosen Linear Alkyl Benzene (LAB) as an organic solvent because
of its chemical properties. The unloaded LS was produced at a refurbished
facility, originally used for scintillator production by the RENO experiment.
JSNS plans to use ISO tanks for the storage and transportation of the LS.
In this paper, we describe the LS production, and present measurements of its
optical properties and long term stability. Our measurements show that storing
the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures
Multipole Amplitudes of Pion Photoproduction on Nucleons up to 2GeV within Dispersion Relations and Unitary Isobar Model
Two approaches for analysis of pion photo- and electroproduction on nucleons
in the resonance energy region are checked at using the results of
GWU(VPI) partial-wave analysis of photoproduction data. The approaches are
based on dispersion relations and unitary isobar model. Within dispersion
relations good description of photoproduction multipoles is obtained up to
. Within unitary isobar model, modified with increasing energy by
incorporation of Regge poles, and with unified Breit-Wigner parametrization of
resonance contributions, good description of photoproduction multipoles is
obtained up to .Comment: 23 pages, LaTe
Magnetic-Field Variations of the Pair-Breaking Effects of Superconductivity in (TMTSF)2ClO4
We have studied the onset temperature of the superconductivity Tc_onset of
the organic superconductor (TMTSF)2ClO4, by precisely controlling the direction
of the magnetic field H. We compare the results of two samples with nearly the
same onset temperature but with different scattering relaxation time tau. We
revealed a complicated interplay of a variety of pair-breaking effects and
mechanisms that overcome these pair-breaking effects. In low fields, the linear
temperature dependences of the onset curves in the H-T phase diagrams are
governed by the orbital pair-breaking effect. The dips in the in-plane
field-angle phi dependence of Tc_onset, which were only observed in the
long-tau sample, provides definitive evidence that the field-induced
dimensional crossover enhances the superconductivity if the field direction is
more than about 19-degrees away from the a axis. In the high-field regime for
H//a, the upturn of the onset curve for the long-tau sample indicates a new
superconducting state that overcomes the Pauli pair-breaking effect but is
easily suppressed by impurity scatterings. The Pauli effect is also overcome
for H//b' by a realization of another state for which the maximum of
Tc_onset(phi) occurs in a direction different from the crystalline axes. The
effect on Tc_onset of tilting the applied field out of the conductive plane
suggests that the Pauli effect plays a significant role in determining
Tc_onset. The most plausible explanation of these results is that (TMTSF)2ClO4
is a singlet superconductor and exhibits Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) states in high fields.Comment: 12 pages, 10 figures. To be published in J. Phys. Soc. Jpn. (vol.77,
2008
Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals
We constructed a neutron calibration facility based on a 300-mCi Am-Be source
in conjunction with a search for weakly interacting massive particle candidates
for dark matter. The facility is used to study the response of CsI(Tl) crystals
to nuclear recoils induced by neutrons from the Am-Be source and comparing them
with the response to electron recoils produced by Compton scattering of 662-keV
-rays from a Cs source. The measured results on pulse shape
discrimination (PSD) between nuclear- and electron-recoil events are quantified
in terms of quality factors. A comparison with similar result from a neutron
reactor demonstrate the feasibility of performing calibrations of PSD
measurements using neutrons from a Am-Be source.Comment: Accepted in JINS
A Comparison of Polarization Observables in Electron Scattering from the Proton and Deuteron
Recoil proton polarization observables were measured for both the p(,e) and d(,en reactions at two values of Q using a newly commissioned proton
Focal Plane Polarimeter at the M.I.T.-Bates Linear Accelerator Center. The
hydrogen and deuterium spin-dependent observables and
, the induced polarization and the form factor ratio
were measured under identical kinematics. The deuterium and
hydrogen results are in good agreement with each other and with the plane-wave
impulse approximation (PWIA).Comment: 9 pages, 1 figure; accepted by Phys. Rev. Let
- …
