206,771 research outputs found
Parents' future visions for their autistic transition-age youth: hopes and expectations
Researchers have documented that young adults with autism spectrum disorder have poor outcomes in employment, post-secondary education, social participation, independent living, and community participation. There is a need to further explore contributing factors to such outcomes to better support successful transitions to adulthood. Parents play a critical role in transition planning, and parental expectations appear to impact young adult outcomes for autistic individuals. The aim of this study was to explore how parents express their future visions (i.e. hopes and expectations) for their autistic transition-age youth. Data were collected through focus groups and individual interviews with 18 parents. Parents' hopes and expectations focused on eight primary domains. In addition, parents often qualified or tempered their stated hope with expressions of fears, uncertainty, realistic expectations, and the perceived lack of guidance. We discuss our conceptualization of the relations among these themes and implications for service providers and research.Accepted manuscrip
Top Partners and Higgs Boson Production
The Higgs boson is produced at the LHC through gluon fusion at roughly the
Standard Model rate. New colored fermions, which can contribute to
, must have vector-like interactions in order not to be in
conflict with the experimentally measured rate. We examine the size of the
corrections to single and double Higgs production from heavy vector-like
fermions in singlets and doublets and search for regions of parameter
space where double Higgs production is enhanced relative to the Standard Model
prediction. We compare production rates and distributions for double Higgs
production from gluon fusion using an exact calculation, the low energy theorem
(LET), where the top quark and the heavy vector-like fermions are taken to be
infinitely massive, and an effective theory (EFT) where top mass effects are
included exactly and the effects of the heavy fermions are included to . Unlike the LET, the EFT gives an extremely accurate description
of the kinematic distributions for double Higgs production.Comment: 37 pages, 11 figures. Minor changes to Figs. 8-1
Aharonov-Bohm oscillations in the local density of states
The scattering of electrons with inhomogeneities produces modulations in the
local density of states of a metal. We show that electron interference
contributions to these modulations are affected by the magnetic field via the
Aharonov-Bohm effect. This can be exploited in a simple STM setup that serves
as an Aharonov-Bohm interferometer at the nanometer scale.Comment: 4 pages, 2 figures. v2 added reference
Ab initio study of electron transport in dry poly(G)-poly(C) A-DNA strands
The bias-dependent transport properties of short poly(G)-poly(C) A-DNA
strands attached to Au electrodes are investigated with first principles
electronic transport methods. By using the non- equilibrium Green's function
approach combined with self-interaction corrected density functional theory, we
calculate the fully self-consistent coherent I-V curve of various double-strand
polymeric DNA fragments. We show that electronic wave-function localization,
induced either by the native electrical dipole and/or by the electrostatic
disorder originating from the first few water solvation layers, drastically
suppresses the magnitude of the elastic conductance of A-DNA oligonucleotides.
We then argue that electron transport through DNA is the result of
sequence-specific short-range tunneling across a few bases combined with
general diffusive/inelastic processes.Comment: 15 pages, 13 figures, 1 tabl
Further analysis of field effects on liquids and solidification
Numerical calculations of the magnitude of external field effects on liquids are presented to describe how external fields can influence the substructure of the field. Quantitative estimates of magnetic and gravitational effects are reported on melts of metals and semiconductors. The results are condensed in tables which contain the input data for calculation of the field effects on diffusion coefficient, solidification rate and for calculation of field forces on individual molecules in the melt
Fermi Surface Reconstruction by Dynamic Magnetic Fluctuations
We demonstrate that nearly critical quantum magnetic fluctuations in strongly
correlated electron systems can change the Fermi surface topology and also lead
to spin charge separation (SCS) in two dimensions. To demonstrate these effects
we consider a small number of holes injected into the bilayer antiferromagnet.
The system has a quantum critical point (QCP) which separates magnetically
ordered and disordered phases. We demonstrate that in the physically
interesting regime there is a magnetically driven Lifshitz point (LP) inside
the magnetically disordered phase. At the LP the topology of the hole Fermi
surface is changed. We also demonstrate that in this regime the hole spin and
charge necessarily separate when approaching the QCP. The considered model
sheds light on generic problems concerning the physics of the cuprates.Comment: updated version, accepted to PR
- …
