770 research outputs found
A kinetic theory of diffusion in general relativity with cosmological scalar field
A new model to describe the dynamics of particles undergoing diffusion in
general relativity is proposed. The evolution of the particle system is
described by a Fokker-Planck equation without friction on the tangent bundle of
spacetime. It is shown that the energy-momentum tensor for this matter model is
not divergence-free, which makes it inconsistent to couple the Fokker-Planck
equation to the Einstein equations. This problem can be solved by postulating
the existence of additional matter fields in spacetime or by modifying the
Einstein equations. The case of a cosmological scalar field term added to the
left hand side of the Einstein equations is studied in some details. For the
simplest cosmological model, namely the flat Robertson-Walker spacetime, it is
shown that, depending on the initial value of the cosmological scalar field,
which can be identified with the present observed value of the cosmological
constant, either unlimited expansion or the formation of a singularity in
finite time will occur in the future. Future collapse into a singularity also
takes place for a suitable small but positive present value of the cosmological
constant, in contrast to the standard diffusion-free scenario.Comment: 17 pages, no figures. The present version corrects an erroneous
statement on the physical interpretation of the results made in the original
publicatio
Distinct order of Gd 4f and Fe 3d moments coexisting in GdFe4Al8
Single crystals of flux-grown tetragonal GdFe4Al8 were characterized by
thermodynamic, transport, and x-ray resonant magnetic scattering measurements.
In addition to antiferromagnetic order at TN ~ 155 K, two low-temperature
transitions at T1 ~ 21 K and T2 ~ 27 K were identified. The Fe moments order at
TN with an incommensurate propagation vector (tau,tau,0) with tau varying
between 0.06 and 0.14 as a function of temperature, and maintain this order
over the entire T<TN range. The Gd 4f moments order below T2 with a
ferromagnetic component mainly out of plane. Below T1, the ferromagnetic
components are confined to the crystallographic plane. Remarkably, at low
temperatures the Fe moments maintain the same modulation as at high
temperatures, but the Gd 4f moments apparently do not follow this modulation.
The magnetic phase diagrams for fields applied in [110] and [001] direction are
presented and possible magnetic structures are discussed.Comment: v2: 14 pages, 12 figures; PRB in prin
Anisotropy and internal field distribution of MgB2 in the mixed state at low temperatures
Magnetization and muon spin relaxation on MgB2 were measured as a function of
field at 2 K. Both indicate an inverse-squared penetration depth strongly
decreasing with increasing field H below about 1 T. Magnetization also suggests
the anisotropy of the penetration depth to increase with increasing H,
interpolating between a low Hc1 and a high Hc2 anisotropy. Torque vs angle
measurements are in agreement with this finding, while also ruling out drastic
differences between the mixed state anisotropies of the two basic length scales
penetration depth and coherence length.Comment: 4 pages, 4 figure
Effect of two bands on critical fields in MgB2 thin films with various resistivity values
Upper critical fields of four MgB2 thin films were measured up to 28 Tesla at
Grenoble High Magnetic Field Laboratory. The films were grown by Pulsed Laser
Deposition and showed critical temperatures ranging between 29.5 and 38.8 K and
resistivities at 40 K varying from 5 to 50 mWcm. The critical fields in the
perpendicular direction turned out to be in the 13-24 T range while they were
estimated to be in 42-57 T the range in ab-planes. In contrast to the
prediction of the BCS theory, we did not observe any saturation at low
temperatures: a linear temperature dependence is exhibited even at lowest
temperatures at which we made the measurements. Moreover, the critical field
values seemed not to depend on the normal state resistivity value. In this
paper, we analyze these data considering the multiband nature of
superconductivity in MgB2 We will show how the scattering mechanisms that
determine critical fields and resistivity can be different.Comment: 17 pages, 3 figure
Coherence lengths and anisotropy in MgB2 superconductor
Field and temperature microwave measurements have been carried out on MgB2
thin film grown on Al2O3 substrate. The analysis reveals the mean field
coherence length xi_{MF} in the mixed state and a temperature independent
anisotropy ratio gamma_{MF} = xi_{MF}^{ab} / xi_{MF}^c approximately 2. At the
superconducting transition, the scaling of the fluctuation conductivity yields
the Ginzburg-Landau coherence length with a different anisotropy ratio
gamma_{GL} = 2.8, also temperature independent.Comment: submitted to PR
Anisotropy of the upper critical field in superconductors with anisotropic gaps. Anisotropy parameters of MgB2
The upper critical field Hc2 is evaluated for weakly-coupled two-band
superconductors. By modeling the actual bands and the gap distribution of MgB2
by two Fermi surface spheroids with average parameters of the real material, we
show that H_{c2,ab}/H_{c2,c} increases with decreasing temperature in agreement
with available data.Comment: 4 pages, 2 figure
Diverse soil carbon dynamics expressed at the molecular level
The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change
Single crystals of LnFeAsO1-xFx (Ln=La, Pr, Nd, Sm, Gd) and Ba1-xRbxFe2As2: growth, structure and superconducting properties
A review of our investigations on single crystals of LnFeAsO1-xFx (Ln=La, Pr,
Nd, Sm, Gd) and Ba1-xRbxFe2As2 is presented. A high pressure technique has been
applied for the growth of LnFeAsO1-xFx crystals, while Ba1-xRbxFe2As2 crystals
were grown using quartz ampoule method. Single crystals were used for
electrical transport, structure, magnetic torque and spectroscopic studies.
Investigations of the crystal structure confirmed high structural perfection
and show less than full occupation of the (O, F) position in superconducting
LnFeAsO1-xFx crystals. Resistivity measurements on LnFeAsO1-xFx crystals show a
significant broadening of the transition in high magnetic fields, whereas the
resistive transition in Ba1 xRbxFe2As2 simply shifts to lower temperature.
Critical current density for both compounds is relatively high and exceeds
2x109 A/m2 at 15 K in 7 T. The anisotropy of magnetic penetration depth,
measured on LnFeAsO1-xFx crystals by torque magnetometry is temperature
dependent and apparently larger than the anisotropy of the upper critical
field. Ba1-xRbxFe2As2 crystals are electronically significantly less
anisotropic. Point-Contact Andreev-Reflection spectroscopy indicates the
existence of two energy gaps in LnFeAsO1-xFx. Scanning Tunneling Spectroscopy
reveals in addition to a superconducting gap, also some feature at high energy
(~20 meV).Comment: 27 pages, 19 figures, 2 tables, accepted to the special issue of the
Physica C on superconducting pnictide
Anisotropy of the Upper Critical Field and Critical Current in Single Crystal MgB
We report on specific heat, high magnetic field transport and
susceptibility measurements on magnesium diboride single crystals. The
upper critical field for magnetic fields perpendicular and parallel to
the Mg and B planes is presented for the first time in the entire temperature
range. A very different temperature dependence has been observed in the two
directions which yields to a temperature dependent anisotropy with 5 at low temperatures and about 2 near . A peak effect is observed
in susceptibility measurements for 2 T parallel to the axis and
the critical current density presnts a sharp maximum for parallel to the
ab-plane.Comment: 6 pages, 5 figure
- …
