175 research outputs found

    Prognostic value of CCND1 gene status in sporadic breast tumours, as determined by real-time quantitative PCR assays

    Get PDF
    The CCND1 gene, a key cell-cycle regulator, is often altered in breast cancer, but the mechanisms underlying CCND1 dysregulation and the clinical significance of CCND1 status are unclear. We used real-time quantitative PCR and RT–PCR assays based on fluorescent TaqMan methodology to quantify CCND1 gene amplification and expression in a large series of breast tumours. CCND1 overexpression was observed in 44 (32.8%) of 134 breast tumour RNAs, ranging from 3.3 to 43.7 times the level in normal breast tissues, and correlated significantly with positive oestrogen receptor status (P=0.0003). CCND1 overexpression requires oestrogen receptor integrity and is exacerbated by amplification at 11q13 (the site of the CCND1 gene), owing to an additional gene dosage effect. Our results challenge CCND1 gene as the main 11q13 amplicon selector. The relapse-free survival time of patients with CCND1-amplified tumours was shorter than that of patients without CCND1 alterations, while that of patients with CCND1-unamplified-overexpressed tumours was longer (P=0.011). Only the good prognostic significance of CCND1-unamplified-overexpression status persisted in Cox multivariate regression analysis. This study confirms that CCND1 is an ER-responsive or ER-coactivator gene in breast cancer, and points to the CCND1 gene as a putative molecular marker predictive of hormone responsiveness in breast cancer. Moreover, CCND1 amplification status dichotomizes the CCND1-overexpressing tumors into two groups with opposite outcomes

    The clinical and functional significance of c-Met in breast cancer: a review

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.CMH-Y is funded by a Cancer Research UK Clinical Research Fellowship. JLJ is funded by the Breast Cancer Campaign Tissue Bank

    Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours

    Get PDF
    We recently discovered that stathmin was overexpressed in a subgroup of human breast carcinomas. Stathmin is a cytosolic phosphoprotein proposed to act as a relay integrating diverse cell signalling pathways, notably during the control of cell growth and differentiation. It may also be considered as one of the key regulators of cell division for its ability to destabilize microtubules in a phosphorylation-dependent manner. To assess the significance of stathmin overexpression in breast cancer, we evaluated the correlation of stathmin expression, quantified by reverse transcription polymerase chain reaction, with several disease parameters in a large series of human primary breast cancer (n = 133), obtained in strictly followed up women, whose clinico-pathological data were fully available. In agreement with our preliminary survey, stathmin was found overexpressed in a subgroup of tumours (22%). In addition, overexpression was correlated to the loss of steroid receptors (oestrogen, P = 0.0006; progesterone, P = 0.008), and to the Scarff–Bloom–Richardson histopathological grade III (P = 0.002), this latter being ascribable to the mitotic index component (P = 0.02). Furthermore studies at the DNA level indicated that stathmin is overexpressed irrespective of its genomic status. Our findings raise important questions concerning the causes and consequences of stathmin overexpression, and the reasons of its inability to counteract cell proliferation in the overexpression group. © 2000 Cancer Research Campaig

    TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration

    Get PDF
    Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs) in normal mammary epithelial cells (MECs), it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP)-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6) is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration

    Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group

    Get PDF
    Next-generation sequencing (NGS) allows sequencing of a high number of nucleotides in a short time frame at an affordable cost. While this technology has been widely implemented, there are no recommendations from scientific societies about its use in oncology practice. The European Society for Medical Oncology (ESMO) is proposing three levels of recommendations for the use of NGS. Based on the current evidence, ESMO recommends routine use of NGS on tumour samples in advanced non-squamous non-small-cell lung cancer (NSCLC), prostate cancers, ovarian cancers and cholangiocarcinoma. In these tumours, large multigene panels could be used if they add acceptable extra cost compared with small panels. In colon cancers, NGS could be an alternative to PCR. In addition, based on the KN158 trial and considering that patients with endometrial and small-cell lung cancers should have broad access to anti-programmed cell death 1 (anti-PD1) antibodies, it is recommended to test tumour mutational burden (TMB) in cervical cancers, well- and moderately-differentiated neuroendocrine tumours, salivary cancers, thyroid cancers and vulvar cancers, as TMB-high predicted response to pembrolizumab in these cancers. Outside the indications of multigene panels, and considering that the use of large panels of genes could lead to few clinically meaningful responders, ESMO acknowledges that a patient and a doctor could decide together to order a large panel of genes, pending no extra cost for the public health care system and if the patient is informed about the low likelihood of benefit. ESMO recommends that the use of off-label drugs matched to genomics is done only if an access programme and a procedure of decision has been developed at the national or regional level. Finally, ESMO recommends that clinical research centres develop multigene sequencing as a tool to screen patients eligible for clinical trials and to accelerate drug development, and prospectively capture the data that could further inform how to optimise the use of this technology
    corecore