371 research outputs found

    Quark matter in compact stars: astrophysical implications and possible signatures

    Full text link
    After a brief non technical introduction of the basic properties of strange quark matter (SQM) in compact stars, we consider some of the late important advances in the field, and discuss some recent astrophysical observational data that could shed new light on the possible presence of SQM in compact stars. We show that above a threshold value of the gravitational mass a neutron star (pure hadronic star) is metastable to the decay (conversion) to an hybrid neutron star or to a strange star. We explore the consequences of the metastability of "massive" neutron stars and of the existence of stable compact "quark" stars (hybrid neutron stars or strange stars) on the concept of limiting mass of compact stars, and we give an extension of this concept with respect to the "classical" one given in 1939 by Oppenheimer and Volkoff.Comment: Invited talk at "the Eleventh Marcel Grossman Meeting on General Relativity", Berlin 200

    Quark deconfinement and neutrino trapping in compact stars

    Full text link
    We study the role played by neutrino trapping on the hadron star (HS) to quark star (QS) conversion mechanism proposed recently by Berezhiani and collaborators. We find that the nucleation of quark matter drops inside hadron matter, and therefore the conversion of a HS into a QS, is strongly inhibit by the presence of neutrinos.Comment: 3 pages, 3 figures. Talk given at the VIII International Conference on Strangeness in Quark Matter. Cape Town, South Africa, Septembre 200

    Spin-orbit and tensor interactions in homogeneous matter of nucleons: accuracy of modern many-body theories

    Get PDF
    We study the energy per particle of symmetric nuclear matter and pure neutron matter using realistic nucleon--nucleon potentials having non central tensor and spin--orbit components, up to three times the empirical nuclear matter saturation density, ρ0=0.16\rho_0=0.16 fm3^{-3}. The calculations are carried out within the frameworks of the Brueckner--Bethe--Goldstone (BBG) and Correlated Basis Functions (CBF) formalisms, in order to ascertain the accuracy of the methods. The two hole--line approximation, with the continuous choice for the single particle auxiliary potential, is adopted for the BBG approach, whereas the variational Fermi Hypernetted Chain/Single Operator Chain theory, corrected at the second order perturbative expansion level, is used in the CBF one. The energies are then compared with the available Quantum and Variational Monte Carlo results in neutron matter and with the BBG, up to the three hole--line diagrams. For neutron matter and potentials without spin--orbit components all methods, but perturbative CBF, are in reasonable agreement up to ρ\rho\sim 3 ρ0\rho_0. After the inclusion of the LS interactions, we still find agreement around ρ0\rho_0, whereas it is spoiled at larger densities. The spin--orbit potential lowers the energy of neutron matter at ρ0\rho_0 by \sim 3--4 MeV per nucleon. In symmetric nuclear matter, the BBG and the variational results are in agreement up to \sim 1.5 ρ0\rho_0. Beyond this density, and in contrast with neutron matter, we find good agreement only for the potential having spin--orbit components.Comment: 18 pages, 4 tables. Accepted in PL

    An improved single particle potential for transport model simulations of nuclear reactions induced by rare isotope beams

    Full text link
    Taking into account more accurately the isospin dependence of nucleon-nucleon interactions in the in-medium many-body force term of the Gogny effective interaction, new expressions for the single nucleon potential and the symmetry energy are derived. Effects of both the spin(isospin) and the density dependence of nuclear effective interactions on the symmetry potential and the symmetry energy are examined. It is shown that they both play a crucial role in determining the symmetry potential and the symmetry energy at supra-saturation densities. The improved single nucleon potential will be useful for simulating more accurately nuclear reactions induced by rare isotope beams within transport models.Comment: 6 pages including 6 figures

    Comparison of dynamical multifragmentation models

    Full text link
    Multifragmentation scenarios, as predicted by antisymmetrized molecular dynamics (AMD) or momentum-dependent stochastic mean-field (BGBD) calculations are compared. While in the BGBD case fragment emission is clearly linked to the spinodal decomposition mechanism, i.e. to mean-field instabilities, in AMD many-body correlations have a stronger impact on the fragmentation dynamics and clusters start to appear at earlier times. As a consequence, fragments are formed on shorter time scales in AMD, on about equal footing of light particle pre-equilibrium emission. Conversely, in BGBD pre-equilibrium and fragment emissions happen on different time scales and are related to different mechanisms

    Microscopic calculation of neutrino mean free path inside hot neutron matter

    Get PDF
    We calculate the neutrino mean free path and the Equation of State of pure neutron matter at finite temperature within a selfconsistent scheme based on the Brueckner--Hartree--Fock approximation. We employ the nucleon-nucleon part of the recent realistic baryon-baryon interaction (model NSC97e) constructed by the Nijmegen group. The temperatures considered range from 10 to 80 MeV. We report on the calculation of the mean field, the residual interaction and the neutrino mean free path including short and long range correlations given by the Brueckner--Hartree--Fock plus Random Phase Approximation (BHF+RPA) framework. This is the first fully consistent calculation in hot neutron matter dedicated to neutrino mean free path. We compare systematically our results to those obtain with the D1P Gogny effective interaction, which is independent of the temperature. The main differences between the present calculation and those with nuclear effective interactions come from the RPA corrections to BHF (a factor of about 8) while the temperature lack of consistency accounts for a factor of about 2
    corecore