4 research outputs found
Error threshold in optimal coding, numerical criteria and classes of universalities for complexity
The free energy of the Random Energy Model at the transition point between
ferromagnetic and spin glass phases is calculated. At this point, equivalent to
the decoding error threshold in optimal codes, free energy has finite size
corrections proportional to the square root of the number of degrees. The
response of the magnetization to the ferromagnetic couplings is maximal at the
values of magnetization equal to half. We give several criteria of complexity
and define different universality classes. According to our classification, at
the lowest class of complexity are random graph, Markov Models and Hidden
Markov Models. At the next level is Sherrington-Kirkpatrick spin glass,
connected with neuron-network models. On a higher level are critical theories,
spin glass phase of Random Energy Model, percolation, self organized
criticality (SOC). The top level class involves HOT design, error threshold in
optimal coding, language, and, maybe, financial market. Alive systems are also
related with the last class. A concept of anti-resonance is suggested for the
complex systems.Comment: 17 page
Breakdown of the Landauer bound for information erasure in the quantum regime
A known aspect of the Clausius inequality is that an equilibrium system
subjected to a squeezing \d S of its entropy must release at least an amount
|\dbarrm Q|=T|\d S| of heat. This serves as a basis for the Landauer
principle, which puts a lower bound for the heat generated by erasure
of one bit of information. Here we show that in the world of quantum
entanglement this law is broken. A quantum Brownian particle interacting with
its thermal bath can either generate less heat or even {\it adsorb} heat during
an analogous squeezing process, due to entanglement with the bath. The effect
exists even for weak but fixed coupling with the bath, provided that
temperature is low enough. This invalidates the Landauer bound in the quantum
regime, and suggests that quantum carriers of information can be much more
efficient than assumed so far.Comment: 13 pages, revtex, 2 eps figure
