521 research outputs found
Determining the Surface-To-Bulk Progression in the Normal-State Electronic Structure of Sr2RuO4 by Angle-Resolved Photoemission and Density Functional Theory
In search of the potential realization of novel normal-state phases on the
surface of Sr2RuO4 - those stemming from either topological bulk properties or
the interplay between spin-orbit coupling (SO) and the broken symmetry of the
surface - we revisit the electronic structure of the top-most layers by ARPES
with improved data quality as well as ab-initio LDA slab calculations. We find
that the current model of a single surface layer (\surd2x\surd2)R45{\deg}
reconstruction does not explain all detected features. The observed
depth-dependent signal degradation, together with the close quantitative
agreement with LDA+SO slab calculations based on the LEED-determined surface
crystal structure, reveal that (at a minimum) the sub-surface layer also
undergoes a similar although weaker reconstruction. This points to a
surface-to-bulk progression of the electronic states driven by structural
instabilities, with no evidence for Dirac and Rashba-type states or surface
magnetism.Comment: 4 pages, 4 figures, 1 table. Further information and PDF available
at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Orbital Symmetries of Charge Density Wave Order in YBa2Cu3O6+x
Charge density wave (CDW) order has been shown to compete and coexist with
superconductivity in underdoped cuprates. Theoretical proposals for the CDW
order include an unconventional -symmetry form factor CDW, evidence for
which has emerged from measurements, including resonant soft x-ray scattering
(RSXS) in YBaCuO (YBCO). Here, we revisit RSXS measurements of
the CDW symmetry in YBCO, using a variation in the measurement geometry to
provide enhanced sensitivity to orbital symmetry. We show that the $(0\ 0.31\
L)Lsd(0.31\ 0\ L)(0\ 0.31\ L)aba$ axis exhibiting orbital order in
addition to charge order.Comment: 17 pages, 4 figures + supplementary informatio
Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap
We study Na2IrO3 by ARPES, optics, and band structure calculations in the
local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g
manifold highlights the importance of structural distortions and spin-orbit
coupling (SO) in driving the system closer to a Mott transition. We detect an
insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type
description, is already open at 300 K and does not show significant temperature
dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and
Coulomb repulsion U reveals that, while the prodromes of an underlying
insulating state are already found in LDA+SO, the correct gap magnitude can
only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a
novel type of Mott-like correlated insulator in which Coulomb and relativistic
effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material
can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Rashba spin-splitting control at the surface of the topological insulator Bi2Se3
The electronic structure of Bi2Se3 is studied by angle-resolved photoemission
and density functional theory. We show that the instability of the surface
electronic properties, observed even in ultra-high-vacuum conditions, can be
overcome via in-situ potassium deposition. In addition to accurately setting
the carrier concentration, new Rashba-like spin-polarized states are induced,
with a tunable, reversible, and highly stable spin splitting. Ab-initio slab
calculations reveal that these Rashba state are derived from the 5QL
quantum-well states. While the K-induced potential gradient enhances the spin
splitting, this might be already present for pristine surfaces due to the
symmetry breaking of the vacuum-solid interface.Comment: A high-resolution version can be found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/BiSe_K.pd
Dirac fermions and flat bands in the ideal kagome metal FeSn.
A kagome lattice of 3d transition metal ions is a versatile platform for correlated topological phases hosting symmetry-protected electronic excitations and magnetic ground states. However, the paradigmatic states of the idealized two-dimensional kagome lattice-Dirac fermions and flat bands-have not been simultaneously observed. Here, we use angle-resolved photoemission spectroscopy and de Haas-van Alphen quantum oscillations to reveal coexisting surface and bulk Dirac fermions as well as flat bands in the antiferromagnetic kagome metal FeSn, which has spatially decoupled kagome planes. Our band structure calculations and matrix element simulations demonstrate that the bulk Dirac bands arise from in-plane localized Fe-3d orbitals, and evidence that the coexisting Dirac surface state realizes a rare example of fully spin-polarized two-dimensional Dirac fermions due to spin-layer locking in FeSn. The prospect to harness these prototypical excitations in a kagome lattice is a frontier of great promise at the confluence of topology, magnetism and strongly correlated physics
Analytical and Numerical Demonstration of How the Drude Dispersive Model Satisfies Nernst's Theorem for the Casimir Entropy
In view of the current discussion on the subject, an effort is made to show
very accurately both analytically and numerically how the Drude dispersive
model, assuming the relaxation is nonzero at zero temperature (which is the
case when impurities are present), gives consistent results for the Casimir
free energy at low temperatures. Specifically, we find that the free energy
consists essentially of two terms, one leading term proportional to T^2, and a
next term proportional to T^{5/2}. Both these terms give rise to zero Casimir
entropy as T -> 0, thus in accordance with Nernst's theorem.Comment: 11 pages, 4 figures; minor changes in the discussion. Contribution to
the QFEXT07 proceedings; matches version to be published in J. Phys.
- …
